Preparation of EuBCO Epitaxial and Textured Films by F-Free Polymer-Assisted Chemical Solution Deposition Method

Article Preview

Abstract:

Epitaxial and textured EuBa2Cu3O7-x(EuBCO) superconductive films were prepared via a F-free polymer-assisted chemical solution deposition (PACSD) method on LaAlO3 (LAO) single crystal substrate in nitrogen atmosphere. Because of the fluorine-free metal organic system, no harmful gas was produced during processing by the PA-CSD method. The film morphorlogy, phase composition, texture and the superconducting critical temperature (Tc) of EuBCO films were investigated by x-ray diffraction (XRD),φ-scan, ω-scan rocking curves, an environmental scanning electron microscope (ESEM) and four-probe method. The Jc value of the EuBCO film in self-field at 77K was measured by using Jc-scan Leipzig system. The results shoed that a denser microstructure and better biaxial texture EuBCO film after a high temperature treatment with a superconducting critical temperature (Tc) of 91K was obtained . The critical current density (Jc) reached 2.4MA/cm2 at 77K in the self-field.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

261-266

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Matias, B.J. Gibbons, T. Findikoglu, S. Kreiskott, L. Bronisz, D. Peterson, IEEE Trans. Appl. Supercond, 13 (2003) 2488.

DOI: 10.1109/tasc.2003.811828

Google Scholar

[2] T. Watanabe, Y. Shiohara, T. Izumi, IEEE Trans. Appl. Supercond, 13 (2003)2445.

Google Scholar

[3] A.P. Malozemoff, S. Annavarapu, L. Fritzemeier, Q. Li,V. Prunier, M. Rupich, C. Thieme, W. Zhang, A. Goyal, M. Paranthaman, D.F. Lee, Supercond. Sci. Technol, 13 (2000) 473.

DOI: 10.1088/0953-2048/13/5/308

Google Scholar

[4] V. Selvamanickam, Y. Chen, X. Xiong, Y. Xie, X. Zhang, Y. Qiao, J. Reeves, A. Rar, R. Schmidt, K. Lensetha, Physica C, 463–465 (2007) 482.

DOI: 10.1016/j.physc.2007.04.236

Google Scholar

[5] Y. Zhao, M.H. Pu, W.T. Wang, M. Lei, C.H. Cheng, H. Zhang, J. Supercond. Nov. Magn, 23(2010) 971.

Google Scholar

[6] T. Honjo, Y. Nakamura, R. Teranishi, H. Fuji, J. Shibata, T. Izumi, and Y. Shiohara, IEEE Trans. Appl. Supercond, 13 (2003) 2516-2519.

DOI: 10.1109/tasc.2003.811836

Google Scholar

[7] T. Minei, T. Tanaka, M. Ogata, N. Mori , K. Yamada and M. Mukaida, Physica C, 445-448(2006) 570-573.

DOI: 10.1016/j.physc.2006.04.050

Google Scholar

[8] T. Izumi, T. Honjo, Y. Tokunaga, H. Fuji, R. Teranishi, Y. Iijima, T. Saitoh,Y. Nakamura and Y Shiohara, IEEE Trans. Appl. Supercond, 13 (2003) 2500-2503.

DOI: 10.1109/tasc.2003.811831

Google Scholar

[9] O. Castano, A. Cavallaro, A. Palau, J.C. Gonzalez, M. Rosell, T. Puig, S. Pinol, N. Mestres, F. Sandiumenge, A. Pomar, X. Obradors, IEEE Trans. Appl. Supercond, 13 (2003) 2504.

DOI: 10.1109/tasc.2003.811832

Google Scholar

[10] W.T. Wang, G. Li, M.H. Pu, H.M. Zhou, Y.B. Zhang, R.P. Sun, H. Zhang, Y. Yang and Y. Zhao, Physica C, 1563 (2008)468.

Google Scholar

[11] M. Velez, J. I. Martin, and J. L. Vicent, Appl. Phys. Lett, 65(1994)2099–2101.

Google Scholar

[12] Q. X. Jia, S. R. Foltyn, P. N. Arendt, H. Wang, J. L. MacManus-Driscoll,Y. Coulter, Y. Li, M.P. Maley, M. Hawley, K. Venkataraman, and V. A. Maroni, Appl. Phys. Lett, 83(2003)1388–1390.

DOI: 10.1063/1.1601680

Google Scholar

[13] W.T. Wang .M.H. Pu .W. Wang .H. Zhang. C.H. Cheng and Y. Zhao, J Supercond Nov Magn, 23(2010) 989–993.

Google Scholar