[1]
E.S. Putna, Ceria-Based Anodes for the Direct Oxidation of Methane in Solid Oxide Fuel Cells, Langmuer 11 (1995) 4832-4837.
DOI: 10.1021/la00012a040
Google Scholar
[2]
Y.J. Wang, J.M. Ma, M.F. Luo, P. Fang, M. He, Preparation of High-Surface Area Nano-CeO2 by Template-Assisted Precipitation Method, J. rare earths 25 (2007) 58-62.
DOI: 10.1016/s1002-0721(07)60045-3
Google Scholar
[3]
N. Izu, W. Shin, N. Murayama, S. Kanzaki, Resistive oxygen gas sensors based on CeO2 fine powder prepared using mist pyrolysis, Sens. Actuat. B 87 (2002) 95-98.
DOI: 10.1016/s0925-4005(02)00224-1
Google Scholar
[4]
C. Larese, M.L. Granados, F. C Galisteo, R. Mariscal, J.L.G. Fierro, TWC deacti-vation by lead: A study of the Rh/CeO2 system, Appl. Catal. B, 62 (2006) 132-143.
DOI: 10.1016/j.apcatb.2005.06.008
Google Scholar
[5]
W.H. Shen, X.P. Dong, Y.F. Zhu, H.R. Chen, J.L. Shi, Mesoporous CeO2 and CuO-loaded mesoporous CeO2: Synthesis, characterization, and CO catalytic oxidation property, Micropor. Mesopor. Mater. 85 (2005) 157-162.
DOI: 10.1016/j.micromeso.2005.06.006
Google Scholar
[6]
P.F. Ji, J.L. Zhang, F. Chen, M. Anpo, Ordered Mesoporous CeO2 Synthesized by Nanocasting from Cubic Ia3d Mesoporous MCM-48 Silica: Formation, Characterization and Photocatalytic Activity, J. Phys. Chem. C 112 (2008) 17809-17813.
DOI: 10.1021/jp8054087
Google Scholar
[7]
A.I.Y. Tok, S.W. Du, F.Y.C. Boey, W.K. Chong, Hydrothermal synthesis and characterization of rare earth doped ceria nanoparticles, Mater. Sci. Eng. A 466 (2007) 223-229.
DOI: 10.1016/j.msea.2007.02.083
Google Scholar
[8]
E.N. Ntainjua, T. Garcia, B. Solsona, S. Taylor, The Influence of Cerium to Urea Preparation Ratio of Nanocrystalline Ceria Catalysts for the Total Oxidation of Naphalene, Catal. Today 137 (2008) 373-378.
DOI: 10.1016/j.cattod.2007.12.140
Google Scholar
[9]
C. Mao, Y. Zhao, X. Qiu, J. Zhu, C. Burda, Synthesis, Characterization and Computational Study of Nitrogen-Doped CeO2 Nanoparticles with Visible-Light Activity. Phys, Chem. Chem. Phys. 10 (2008) 5633-5638.
DOI: 10.1039/b805915b
Google Scholar
[10]
H. Chen, A. Sayari, A. Adnot, F. Larachi, Composition-activity Effects of Mn-Ce-O Composites on Phenol Catalytic Wet Oxidation, Appl. Catal. B: Environ. 32 (2001) 195-204.
DOI: 10.1016/s0926-3373(01)00136-9
Google Scholar
[11]
M. Hartmann, Hierarchical Zeolites: A Proven Strategy to Combine Shape Selectivity with Efficient Mass Transport, Angew. Chem. Int. Ed. 43 (2004) 5880-5882.
DOI: 10.1002/anie.200460644
Google Scholar
[12]
C. Ho, J. Yu, X. Wang, S. Lai, Y. Qiu, Meso- and Macro-Porous Pd/CexZr1-xO2 as Novel Oxidation Catalysts, J. Mater. Chem. 15 (2005) 2193-2201.
DOI: 10.1039/b500902b
Google Scholar
[13]
A. Corma, P. Atienzar, H. Garcia, J. Chane-Ching, Hierarchically Mesostructured Doped CeO2 with Potential for Solar-Cell Use, Nat. Mater. 3 (2004) 394-397.
DOI: 10.1038/nmat1129
Google Scholar
[14]
Z. Yuan, B. Su, Insights Into Hierarchically Meso-Macroporous Structured Materials, J. Mater. Chem. 16 (2006) 663-677.
DOI: 10.1039/b512304f
Google Scholar
[15]
S.R. Hall, H. Bolger, S. Mann, Morphosynthesis of complex inorganic forms using pollen grain templates, Chem. Commum. 22 (2003) 2784-2785.
DOI: 10.1039/b309877j
Google Scholar
[16]
X. Li, T. Fan, H. Zhou, S. -K. Chow, W. Zhang, D. Zhang, Q. Guo, H. Ogawa, Enhanced Light-Harvesting and Photocatalytic Properties in Morph-TiO2 from Green-Leaf Biotemplates, Adv. Funct. Mater. 19 (2009) 45-56.
DOI: 10.1002/adfm.200800519
Google Scholar
[17]
W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Q. Guo, H. Ogawa, Novel Photoanode Structure Templated from Butterfly Wing Scales, Chem. Mater. 21 (2008) 33-40.
DOI: 10.1021/cm702458p
Google Scholar
[18]
G. Kostovski, D.J. White, A. Mitchell, M.W. Austin, P.R. Stoddart, Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing, Biosens. Bioelectron. 24 (2009) 1531-1535.
DOI: 10.1016/j.bios.2008.10.016
Google Scholar
[19]
S. Singh, U.M. Bhatta, P.V. Satyam, A. Dhawan, M. Sastry, B.L.V. Prasad, Bacterial synthesis of silicon/silica nanocomposites J. Mater. Chem. 18 (2008) 2601-2606.
DOI: 10.1039/b719528a
Google Scholar
[20]
S. Xu, L. Li, Z. Du, L. Tang, Y. Wang, T. Wang, J. Li, A netlike DNA-templated Au nanoconjugate as the matrix of the direct electrochemistry of horseradish peroxidase Electrochem. Commun. 11 (2009) 327-330.
DOI: 10.1016/j.elecom.2008.12.002
Google Scholar
[21]
H. Zhu, Z. Qin, W. Shan, W. Shen, J. Wang, Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents, J. Catal. 225 (2004) 267-277.
DOI: 10.1016/j.jcat.2004.04.006
Google Scholar
[22]
Q. Huang, X. Xue, R. Zhou, Influence of interaction between CeO2 and USY on the catalytic performance of CeO2–USY catalysts for deep oxidation of 1, 2-dichloroethane, J. Mol. Catal. A: Chem 331 (2010) 130-136.
DOI: 10.1016/j.molcata.2010.08.017
Google Scholar
[23]
J. Zhou, L. Zhao, Q. Huang, R. Zhou, X. Li, Catalytic Activity of Y Zeolite Supported CeO2 Catalysts for Deep Oxidation of 1, 2-Dichloroethane (DCE), Catal. Lett. 127 (2009) 277-284.
DOI: 10.1007/s10562-008-9672-5
Google Scholar
[24]
I. Atribak, A. Bueno-López, A. García-García, Combined removal of diesel soot particulates and NOx over CeO2–ZrO2 mixed oxides, J. Catal. 259 (2008) 123-132.
DOI: 10.1016/j.jcat.2008.07.016
Google Scholar
[25]
F. Giordano, A. Trovarelli, C. de Leitenburg, M. Giona, A Model for the Temperature-Programmed Reduction of Low and High Surface Area Ceria, J. Catal. 193 (2000) 273-282.
DOI: 10.1006/jcat.2000.2900
Google Scholar
[26]
L.A. Bruce, M. Hoang, A.E. Hughes, T.W. Turney, Surface area control during the synthesis and reduction of high area ceria catalyst supports, Appl. Catal. A 134 (1996) 351-362.
DOI: 10.1016/0926-860x(95)00217-0
Google Scholar