Biotemplate Synthesis of Porous Ceria Fiber and Study on its Catalytic Performance

Article Preview

Abstract:

Hierarchical porous ceria with nanocrystalline was successfully synthesized using filter paper as biotemplate. Unique biomorphic microstructures were characterized by Field Emission Scanning Electron Microscope (FESEM), transmission electron microscopy (TEM) and nitrogen absorption-desorption technique. The obtained ceria material showed the repetitious biomimetic structure consisting of fibre with diameter of ca. 1-3 μm and nanopores which had 2-4 nm apertures. The small crystallite diameter (6-8 nm) and the high specific surface area (71.3 m2·g-1) of porous CeO2 were measured by wide-angle X-ray Diffraction (XRD), high resolution TEM (HRTEM) and the BET method. While the concentration of acid fuchsine was 20 mg/L, the porous sample had a higher decoloring rate in a shorter time than others. The decoloring rate can reach 100% after 200 min.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

491-498

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.S. Putna, Ceria-Based Anodes for the Direct Oxidation of Methane in Solid Oxide Fuel Cells, Langmuer 11 (1995) 4832-4837.

DOI: 10.1021/la00012a040

Google Scholar

[2] Y.J. Wang, J.M. Ma, M.F. Luo, P. Fang, M. He, Preparation of High-Surface Area Nano-CeO2 by Template-Assisted Precipitation Method, J. rare earths 25 (2007) 58-62.

DOI: 10.1016/s1002-0721(07)60045-3

Google Scholar

[3] N. Izu, W. Shin, N. Murayama, S. Kanzaki, Resistive oxygen gas sensors based on CeO2 fine powder prepared using mist pyrolysis, Sens. Actuat. B 87 (2002) 95-98.

DOI: 10.1016/s0925-4005(02)00224-1

Google Scholar

[4] C. Larese, M.L. Granados, F. C Galisteo, R. Mariscal, J.L.G. Fierro, TWC deacti-vation by lead: A study of the Rh/CeO2 system, Appl. Catal. B, 62 (2006) 132-143.

DOI: 10.1016/j.apcatb.2005.06.008

Google Scholar

[5] W.H. Shen, X.P. Dong, Y.F. Zhu, H.R. Chen, J.L. Shi, Mesoporous CeO2 and CuO-loaded mesoporous CeO2: Synthesis, characterization, and CO catalytic oxidation property, Micropor. Mesopor. Mater. 85 (2005) 157-162.

DOI: 10.1016/j.micromeso.2005.06.006

Google Scholar

[6] P.F. Ji, J.L. Zhang, F. Chen, M. Anpo, Ordered Mesoporous CeO2 Synthesized by Nanocasting from Cubic Ia3d Mesoporous MCM-48 Silica: Formation, Characterization and Photocatalytic Activity, J. Phys. Chem. C 112 (2008) 17809-17813.

DOI: 10.1021/jp8054087

Google Scholar

[7] A.I.Y. Tok, S.W. Du, F.Y.C. Boey, W.K. Chong, Hydrothermal synthesis and characterization of rare earth doped ceria nanoparticles, Mater. Sci. Eng. A 466 (2007) 223-229.

DOI: 10.1016/j.msea.2007.02.083

Google Scholar

[8] E.N. Ntainjua, T. Garcia, B. Solsona, S. Taylor, The Influence of Cerium to Urea Preparation Ratio of Nanocrystalline Ceria Catalysts for the Total Oxidation of Naphalene, Catal. Today 137 (2008) 373-378.

DOI: 10.1016/j.cattod.2007.12.140

Google Scholar

[9] C. Mao, Y. Zhao, X. Qiu, J. Zhu, C. Burda, Synthesis, Characterization and Computational Study of Nitrogen-Doped CeO2 Nanoparticles with Visible-Light Activity. Phys, Chem. Chem. Phys. 10 (2008) 5633-5638.

DOI: 10.1039/b805915b

Google Scholar

[10] H. Chen, A. Sayari, A. Adnot, F. Larachi, Composition-activity Effects of Mn-Ce-O Composites on Phenol Catalytic Wet Oxidation, Appl. Catal. B: Environ. 32 (2001) 195-204.

DOI: 10.1016/s0926-3373(01)00136-9

Google Scholar

[11] M. Hartmann, Hierarchical Zeolites: A Proven Strategy to Combine Shape Selectivity with Efficient Mass Transport, Angew. Chem. Int. Ed. 43 (2004) 5880-5882.

DOI: 10.1002/anie.200460644

Google Scholar

[12] C. Ho, J. Yu, X. Wang, S. Lai, Y. Qiu, Meso- and Macro-Porous Pd/CexZr1-xO2 as Novel Oxidation Catalysts, J. Mater. Chem. 15 (2005) 2193-2201.

DOI: 10.1039/b500902b

Google Scholar

[13] A. Corma, P. Atienzar, H. Garcia, J. Chane-Ching, Hierarchically Mesostructured Doped CeO2 with Potential for Solar-Cell Use, Nat. Mater. 3 (2004) 394-397.

DOI: 10.1038/nmat1129

Google Scholar

[14] Z. Yuan, B. Su, Insights Into Hierarchically Meso-Macroporous Structured Materials, J. Mater. Chem. 16 (2006) 663-677.

DOI: 10.1039/b512304f

Google Scholar

[15] S.R. Hall, H. Bolger, S. Mann, Morphosynthesis of complex inorganic forms using pollen grain templates, Chem. Commum. 22 (2003) 2784-2785.

DOI: 10.1039/b309877j

Google Scholar

[16] X. Li, T. Fan, H. Zhou, S. -K. Chow, W. Zhang, D. Zhang, Q. Guo, H. Ogawa, Enhanced Light-Harvesting and Photocatalytic Properties in Morph-TiO2 from Green-Leaf Biotemplates, Adv. Funct. Mater. 19 (2009) 45-56.

DOI: 10.1002/adfm.200800519

Google Scholar

[17] W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Q. Guo, H. Ogawa, Novel Photoanode Structure Templated from Butterfly Wing Scales, Chem. Mater. 21 (2008) 33-40.

DOI: 10.1021/cm702458p

Google Scholar

[18] G. Kostovski, D.J. White, A. Mitchell, M.W. Austin, P.R. Stoddart, Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing, Biosens. Bioelectron. 24 (2009) 1531-1535.

DOI: 10.1016/j.bios.2008.10.016

Google Scholar

[19] S. Singh, U.M. Bhatta, P.V. Satyam, A. Dhawan, M. Sastry, B.L.V. Prasad, Bacterial synthesis of silicon/silica nanocomposites J. Mater. Chem. 18 (2008) 2601-2606.

DOI: 10.1039/b719528a

Google Scholar

[20] S. Xu, L. Li, Z. Du, L. Tang, Y. Wang, T. Wang, J. Li, A netlike DNA-templated Au nanoconjugate as the matrix of the direct electrochemistry of horseradish peroxidase Electrochem. Commun. 11 (2009) 327-330.

DOI: 10.1016/j.elecom.2008.12.002

Google Scholar

[21] H. Zhu, Z. Qin, W. Shan, W. Shen, J. Wang, Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents, J. Catal. 225 (2004) 267-277.

DOI: 10.1016/j.jcat.2004.04.006

Google Scholar

[22] Q. Huang, X. Xue, R. Zhou, Influence of interaction between CeO2 and USY on the catalytic performance of CeO2–USY catalysts for deep oxidation of 1, 2-dichloroethane, J. Mol. Catal. A: Chem 331 (2010) 130-136.

DOI: 10.1016/j.molcata.2010.08.017

Google Scholar

[23] J. Zhou, L. Zhao, Q. Huang, R. Zhou, X. Li, Catalytic Activity of Y Zeolite Supported CeO2 Catalysts for Deep Oxidation of 1, 2-Dichloroethane (DCE), Catal. Lett. 127 (2009) 277-284.

DOI: 10.1007/s10562-008-9672-5

Google Scholar

[24] I. Atribak, A. Bueno-López, A. García-García, Combined removal of diesel soot particulates and NOx over CeO2–ZrO2 mixed oxides, J. Catal. 259 (2008) 123-132.

DOI: 10.1016/j.jcat.2008.07.016

Google Scholar

[25] F. Giordano, A. Trovarelli, C. de Leitenburg, M. Giona, A Model for the Temperature-Programmed Reduction of Low and High Surface Area Ceria, J. Catal. 193 (2000) 273-282.

DOI: 10.1006/jcat.2000.2900

Google Scholar

[26] L.A. Bruce, M. Hoang, A.E. Hughes, T.W. Turney, Surface area control during the synthesis and reduction of high area ceria catalyst supports, Appl. Catal. A 134 (1996) 351-362.

DOI: 10.1016/0926-860x(95)00217-0

Google Scholar