Preparation and Electrical Properties of Mn-Co-Ni-O Thin-Film for NTC Thermistors Application

Article Preview

Abstract:

Mn-Co-Ni-O (Mn:Co:Ni=1.74:0.72:0.54, MCN) thin films with single cubic spinel structure were prepared on Si substrates by metal organic solution deposition (MOSD) method at different annealing temperatures. The effects of annealing temperature on the phase component, crystalline microstructure, surface morphology and electrical properties of the MCN thin films were studied. According to the results of x-ray diffraction pattern, the MCN thin film annealed at 650 had spinel structure. Observation with field emission scanning electron microscope (FE-SEM) on the MCN thin films showed that the grain size increased with increasing annealing temperature. The resistance measured at room-temperature was 18.143, 12.457, 2.435 and 3.141MΩ for the MCN thin films annealed at 650, 700, 750 and 800, respectively. The values of thermistor constant (B30/85) and activation energy (Ea) were in the range of 3260-4840K and 0.28-0.42eV, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

599-604

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Hou, Z.M. Huang, Y.Q. Gao, Y.Q. Ge, et al., Characterization of Mn1. 56Co0. 96Ni0. 48O4 films for infrared detection, J. Appl. Phys. Lett. 92 (2008) 202115-202115-3.

DOI: 10.1063/1.2936292

Google Scholar

[2] Y.Q. Gao, Z.M. Huang, Y. Hou, J. Wu, et al., Optical properties of Mn1. 56Co0. 96Ni0. 48O4 films studied by spectroscopic ellipsometry, J. Appl. Phys. Lett. 94 (2009) 011106-011106-3.

DOI: 10.1063/1.3064133

Google Scholar

[3] D.C. Kulkarni, S.P. Patil, V. Puri, Properties of NixZn1-xFe2O4 thick films at microwave frequencies, J. Microelectronics Journal 39 (2008) 248-252.

DOI: 10.1016/j.mejo.2007.12.008

Google Scholar

[4] R. Kumar, S.K. Arora, I.V. Shvets, N.E. Rajeevan, P.P. Pradyumnan, Structural and transport properties of Bi-substituted Co2MnO4, J. Appl. Phys. Lett. 105 (2009) 07D910-07D910-3.

DOI: 10.1063/1.3067635

Google Scholar

[5] L. He, Z.Y. Ling, Studies of temperature dependent ac impedance of a negative temperature coefficient Mn-Co-Ni-O thin film thermistor, J. Appl. Phys. Lett. 98 (2011) 242112-242112-3.

DOI: 10.1063/1.3596454

Google Scholar

[6] S.A. Kanade, V. Puri, Composition dependent resistivity of thick film Ni(1-x)CoxMn2O4: (0≤x≤1) NTC thermistors, J. Mater. Lett. 60 (2006) 1428–1431.

DOI: 10.1016/j.matlet.2005.11.042

Google Scholar

[7] D.A. Kukuruznyak, S.A. Bulkley, K.A. Omland, F.S. Ohuchi, et al., Preparation and properties of thermistor thin films by metal organic decomposition, J. Thin Solid Films 385 (2001) 89-95.

DOI: 10.1016/s0040-6090(00)01890-3

Google Scholar

[8] C.L. Yuan, X.Y. Liu, M.F. Ling, et al., Electrical properties of Sr-Bi-Mn-Fe-O thick film NTC thermistors prepared by screen printing, J. Sensors and Actuators A 167 (2011) 291-296.

DOI: 10.1016/j.sna.2011.02.047

Google Scholar

[9] A. Basu, A.W. Brinkmana, R. Schmidta, et al., A study of the electronic states of NixMn3-xO4+δ thin films using scanning tunneling microscopy and current imaging tunneling spectroscopy, J. Journal of the European Ceramic Society 24 (2004).

DOI: 10.1016/s0955-2219(03)00586-7

Google Scholar

[10] F.Y. Cheng, J. Shen, B. Peng, Y.D. Pan, Z.L. Tao, J. Chen, Rapid room temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts, J. Nature Chem. 931 (2011) 79-84.

DOI: 10.1038/nchem.931

Google Scholar

[11] H.C. Choi, J.H. Shim, B.I. Min, Electronic structures and magnetic properties of spinel ZnMn2O4 under high process, J. Phy. Rev. B 74 (2006) 172103-172103-4.

Google Scholar

[12] J.K. Burdett, G.D. Price, S.L. Price, Role of the crystal-field theory in determining the structures of spinels, J. Am. Chem. Soc. 104 (1982) 92-95.

DOI: 10.1021/ja00365a019

Google Scholar

[13] E. Rios, J.L. Gautier, G. Poillerat, P. Chartier, Mixed valency spinel oxides of transition metals and electrocatalysis: case of the MnxCo3-xO4 system, J. Electrochim. Acta. 44 (1998) 1491-1497.

DOI: 10.1016/s0013-4686(98)00272-2

Google Scholar

[14] R.M. Rojas, E. Vila, O. García, et al., Thermal behaviour and reactivity of manganese cobaltites MnxCo3-xO4 (0<x<1) obtained at low temperature, J. Mater. Chem. 4 (1994) 1635-1639.

DOI: 10.1039/jm9940401635

Google Scholar

[15] S.A. Kanade, V. Puri, Properities of thick film Ni0. 6Co0. 4FeyMn2-yO4: (0≤y≤0. 5) NTC ceramic, J. Journal of Alloys and Compounds 475 (2009) 352-355.

DOI: 10.1016/j.jallcom.2008.07.022

Google Scholar

[16] R. Jadhav, D. Kulkarni, V. Puri, Structural and electrical properities of fritless Ni(1-x)CuxMn2O4 (0≤x≤1) thick film NTC ceramic, J. Mater Sci: Mater Electron 21 (2010) 503-508.

DOI: 10.1007/s10854-009-9946-8

Google Scholar

[17] P. Lavela, J.L. Tirado, C.V. Abarca, Sol-gel preparation of cobalt manganese mixed oxides for their use as electrode materials in lithium cells, J. Electrochim. Acta. 52 (2007) 7986-7995.

DOI: 10.1016/j.electacta.2007.06.066

Google Scholar