[1]
Y. Hou, Z.M. Huang, Y.Q. Gao, Y.Q. Ge, et al., Characterization of Mn1. 56Co0. 96Ni0. 48O4 films for infrared detection, J. Appl. Phys. Lett. 92 (2008) 202115-202115-3.
DOI: 10.1063/1.2936292
Google Scholar
[2]
Y.Q. Gao, Z.M. Huang, Y. Hou, J. Wu, et al., Optical properties of Mn1. 56Co0. 96Ni0. 48O4 films studied by spectroscopic ellipsometry, J. Appl. Phys. Lett. 94 (2009) 011106-011106-3.
DOI: 10.1063/1.3064133
Google Scholar
[3]
D.C. Kulkarni, S.P. Patil, V. Puri, Properties of NixZn1-xFe2O4 thick films at microwave frequencies, J. Microelectronics Journal 39 (2008) 248-252.
DOI: 10.1016/j.mejo.2007.12.008
Google Scholar
[4]
R. Kumar, S.K. Arora, I.V. Shvets, N.E. Rajeevan, P.P. Pradyumnan, Structural and transport properties of Bi-substituted Co2MnO4, J. Appl. Phys. Lett. 105 (2009) 07D910-07D910-3.
DOI: 10.1063/1.3067635
Google Scholar
[5]
L. He, Z.Y. Ling, Studies of temperature dependent ac impedance of a negative temperature coefficient Mn-Co-Ni-O thin film thermistor, J. Appl. Phys. Lett. 98 (2011) 242112-242112-3.
DOI: 10.1063/1.3596454
Google Scholar
[6]
S.A. Kanade, V. Puri, Composition dependent resistivity of thick film Ni(1-x)CoxMn2O4: (0≤x≤1) NTC thermistors, J. Mater. Lett. 60 (2006) 1428–1431.
DOI: 10.1016/j.matlet.2005.11.042
Google Scholar
[7]
D.A. Kukuruznyak, S.A. Bulkley, K.A. Omland, F.S. Ohuchi, et al., Preparation and properties of thermistor thin films by metal organic decomposition, J. Thin Solid Films 385 (2001) 89-95.
DOI: 10.1016/s0040-6090(00)01890-3
Google Scholar
[8]
C.L. Yuan, X.Y. Liu, M.F. Ling, et al., Electrical properties of Sr-Bi-Mn-Fe-O thick film NTC thermistors prepared by screen printing, J. Sensors and Actuators A 167 (2011) 291-296.
DOI: 10.1016/j.sna.2011.02.047
Google Scholar
[9]
A. Basu, A.W. Brinkmana, R. Schmidta, et al., A study of the electronic states of NixMn3-xO4+δ thin films using scanning tunneling microscopy and current imaging tunneling spectroscopy, J. Journal of the European Ceramic Society 24 (2004).
DOI: 10.1016/s0955-2219(03)00586-7
Google Scholar
[10]
F.Y. Cheng, J. Shen, B. Peng, Y.D. Pan, Z.L. Tao, J. Chen, Rapid room temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts, J. Nature Chem. 931 (2011) 79-84.
DOI: 10.1038/nchem.931
Google Scholar
[11]
H.C. Choi, J.H. Shim, B.I. Min, Electronic structures and magnetic properties of spinel ZnMn2O4 under high process, J. Phy. Rev. B 74 (2006) 172103-172103-4.
Google Scholar
[12]
J.K. Burdett, G.D. Price, S.L. Price, Role of the crystal-field theory in determining the structures of spinels, J. Am. Chem. Soc. 104 (1982) 92-95.
DOI: 10.1021/ja00365a019
Google Scholar
[13]
E. Rios, J.L. Gautier, G. Poillerat, P. Chartier, Mixed valency spinel oxides of transition metals and electrocatalysis: case of the MnxCo3-xO4 system, J. Electrochim. Acta. 44 (1998) 1491-1497.
DOI: 10.1016/s0013-4686(98)00272-2
Google Scholar
[14]
R.M. Rojas, E. Vila, O. García, et al., Thermal behaviour and reactivity of manganese cobaltites MnxCo3-xO4 (0<x<1) obtained at low temperature, J. Mater. Chem. 4 (1994) 1635-1639.
DOI: 10.1039/jm9940401635
Google Scholar
[15]
S.A. Kanade, V. Puri, Properities of thick film Ni0. 6Co0. 4FeyMn2-yO4: (0≤y≤0. 5) NTC ceramic, J. Journal of Alloys and Compounds 475 (2009) 352-355.
DOI: 10.1016/j.jallcom.2008.07.022
Google Scholar
[16]
R. Jadhav, D. Kulkarni, V. Puri, Structural and electrical properities of fritless Ni(1-x)CuxMn2O4 (0≤x≤1) thick film NTC ceramic, J. Mater Sci: Mater Electron 21 (2010) 503-508.
DOI: 10.1007/s10854-009-9946-8
Google Scholar
[17]
P. Lavela, J.L. Tirado, C.V. Abarca, Sol-gel preparation of cobalt manganese mixed oxides for their use as electrode materials in lithium cells, J. Electrochim. Acta. 52 (2007) 7986-7995.
DOI: 10.1016/j.electacta.2007.06.066
Google Scholar