Study on the In Situ Growth of Carbon Nanotubes for the Reinforcement of Cf/SiC Composite Fabricated by CVI+PIP Process

Article Preview

Abstract:

Cf/SiC composites were fabricated through in situ growth of carbon nanotubes (CNTs) on three-dimensional needle-punched carbon fabric via chemical vapor deposition and polymer impregnation and pyrolysis process. The mechanical and thermal properties of the composites were investigated. The flexural strength and fracture toughness were decreased due to the fiber volume fraction loss and much shorter pull-out length of fibers which was caused by the higher interfacial bonding strength between fiber and matrix after the growth of CNTs. Brittle fracture character of CNTs was observed due to the strong interfacial bonding strength between CNTs and matrix. The parallel thermal conductivity and perpendicular thermal conductivity were improved to 14.5% and 8.0% respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 745-746)

Pages:

582-586

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Schmidt, S. Beyer, H. Knabe, H. Immich, R. Meistring, A. Gessler. Advanced ceramic matrix composite materials for current and future propulsion technology applications. Acta Astronaut. 55 (2004) 409-420.

DOI: 10.1016/j.actaastro.2004.05.052

Google Scholar

[2] D. P. Stinton, A. J. Caputo, R. A. Lowden. Synthesis of Fiber-Reinforced SiC Composites by Chemical Vapor Infiltration. Am. Ceram. Soc. Bull. 65 (1986) 347-350.

Google Scholar

[3] W. Yang, H. Araki, A. Kohyama, Q. L. Hu, H. Suzuki, T. Noda. Growing SiC nanowires on Tyranno-SA SiC fibers. J. Am. Ceram. Soc. 87 (2004) 733-735.

DOI: 10.1111/j.1551-2916.2004.00733.x

Google Scholar

[4] W. Yang, H. Araki, A. Kohyama, S. Thaveethavorn, H. Suzuki, T. Noda. Process and mechanical properties of in situ silicon carbide-nanowire-reinforced chemical vapor infiltrated silicon carbide/silicon carbide composite. J. Am. Ceram. Soc. 87 (2004).

DOI: 10.1111/j.1551-2916.2004.01720.x

Google Scholar

[5] W. Yang, H. Araki, C. C. Tang, S. Thaveethavorn, A. Kohyama, H. Suzuki, T. Noda. Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites. Adv. Mater. 17 (2005) 1519-1523.

DOI: 10.1002/adma.200500104

Google Scholar

[6] R. S. Ruoff, D. C. Lorents. Mechanical and Thermal-Properties of Carbon Nanotubes. Carbon 33 (1995) 925-930.

DOI: 10.1016/0008-6223(95)00021-5

Google Scholar

[7] T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio. Electrical conductivity of individual carbon nanotubes. Nature 382 (1996) 54-56.

DOI: 10.1038/382054a0

Google Scholar

[8] H. Qian, E. S. Greenhalgh, M. S. P. Shaffer, A. Bismarck. Carbon nanotube-based hierarchical composites: a review. J. Mater. Chem. 20 (2010) 4751-4562.

DOI: 10.1039/c000041h

Google Scholar

[9] E. T. Thostenson, W. Z. Li, D. Z. Wang, Z. F. Ren, T. W. Chou. Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91 (2002) 6034-6037.

DOI: 10.1063/1.1466880

Google Scholar

[10] E. J. Garcia, B. L. Wardle, A. J. Hart, N. Yamamoto. Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ. Compos. Sci. Technol. 68 (2008) 2034-(2041).

DOI: 10.1016/j.compscitech.2008.02.028

Google Scholar

[11] C. W. Nan, G. Liu, Y. H. Lin, M. Li. Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 85 (2004) 3549-3551.

DOI: 10.1063/1.1808874

Google Scholar

[12] S. T. Huxtable, D. G. Cahill, S. Shenogin, L. P. Xue, R. Ozisik, P. Barone, et al. Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2 (2003) 731-734.

DOI: 10.1038/nmat996

Google Scholar