[1]
H. Harmuth, K. Rieder, M. Krobath, E. Tschegg, Investigation of the nonlinear fracture behaviour of ordinary ceramic refractory materials, J. Mater. Sci. Eng. A. 214 (1996) 53–61.
DOI: 10.1016/0921-5093(96)10221-5
Google Scholar
[2]
S. Ribeiro, J.A. Rodrigues, The influence of microstructure on the maximum load and fracture energy of refractory castables. J. Ceram. Inter. 36 (2010) 263–274.
DOI: 10.1016/j.ceramint.2009.07.033
Google Scholar
[3]
S. Sumimura, T. Yamamura, Y. Cubata, T. Kanashige, Study on slag penetration of alumina-spinel castable, Proce. of UNITECRˇı93 Sao Paulo Brazil. (1993) 97–101.
Google Scholar
[4]
L.A. Diaz, R. Torrecillas, Effect of spinel content on slag attack resistance of high alumina refractory castables, J. Eur. ceram. Soc. 27 (2007) 4623-4631.
DOI: 10.1016/j.jeurceramsoc.2007.04.007
Google Scholar
[5]
I. Ohish, R. Ebizawa, Application of alumina–spinel castable refractoriesto steel ladle, In Proceedings of UNITECRˇı91 Congress. (1991) 101–107.
Google Scholar
[6]
M. Nakashima, T. Isobe, S. Itose, et al., Improving the Corrosion Resistance of Alumina-Spinel Castable by Adding Ultrafine Spinel, In Taikabutsu Overseas Abstracts of the 10th Annual Colloquium of TARJ. 17 (1997) 96.
Google Scholar
[7]
J. Mori, M. Onove, Y. Toritani, et al., Structure change of alumina castable by addition of magnesia or spinel, Taikabutsu Overseas. 15 (1995) 20–23.
Google Scholar
[8]
Y.C. Ko, C.F. Chan, Effect of spinel content on hot strength of aluminas-pinel castables in the temperature range 1000–1500 ℃, J. Eur. Ceram. Soc. 19 (1999) 2633–2639.
DOI: 10.1016/s0955-2219(99)00042-4
Google Scholar
[9]
C.F. Chan, Y.C. Ko, Effect of CaO content on the hot strength of alumina-spinel castables in the temperature range 1000–1500 ℃, J. Am. Ceram. Soc. 81 (1998) 2957–2960.
DOI: 10.1111/j.1151-2916.1998.tb02719.x
Google Scholar
[10]
Y. Sato, H. Joguchi, N. Hiroki, Test results of alumina-spinel castables for steel ladle, Taikabutsu Overseas 12 (1992) 10–14.
Google Scholar
[11]
Y.C. Ko, Influence of the characteristics of spinels on the slag resistance of Al2O3-MgO and Al2O3-spinel castables, J. Am. Ceram. Soc. 83 (2000) 2333–2335.
DOI: 10.1111/j.1151-2916.2000.tb01559.x
Google Scholar
[12]
B. Alapin, M. Ollig, J. Po¨tschke, Thermomechanical properties of selected refractory materials, in Proceedings of 46th Inter Coll Refr Eurogress Aachen Germany. (2003) 107–112.
Google Scholar
[13]
S. Ribeiro, J.S.C. Vieira, C.C.D. Exposito, et al,. in: Proceedings 10th Unified International Technical Conference on Refractories (UNITECR), Dresden Alemanha. (2007). 498–502.
Google Scholar
[14]
J.H. Ainsworth, R.H. Herron, High temperature fracture energy of refractories, Ceram. Bull. 55 (1976) 655-664.
Google Scholar
[15]
D.P.H. Hasselman, Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics, J. Am. Ceram. Soc. 52 (1969) 600-604.
DOI: 10.1111/j.1151-2916.1969.tb15848.x
Google Scholar
[16]
H. Harmuth, R.C. Bradt, Investigation of refractory brittleness by fracture mechanical and fractographic methods, Refract. Manual. (2010) 6-10.
Google Scholar