[1]
K. Vecchio, Synthetic multifunctional metallic-intermetallic laminate composites, JOM. 57(2005) 25-31.
DOI: 10.1007/s11837-005-0229-4
Google Scholar
[2]
D.P. Adams, M. Vill, J. Tao, J.C. Bilello, S.M. Yalisove, Controlling strength and toughness of multilayer films: A new multiscalar approach, J. Appl. Phys. 74 (1993) 1015-1021.
DOI: 10.1063/1.354947
Google Scholar
[3]
R.G. Rowe, D.W. Skelly, M. Larsen, J. Heathcote, G.R. Odette, G.E. Lucas, Microlaminated high temperature intermetallic composites, Scr. Mater. 31 (1994) 1487-1492.
DOI: 10.1016/0956-716x(94)90061-2
Google Scholar
[4]
T. Chartier, D. Merle, J.L. Besson, Laminar ceramic composites, J. Eur. Ceram. Soc. 15 (1995) 101-107.
Google Scholar
[5]
G.S. Was, T. Foecke, Deformation and fracture in microlaminates, Thin Solid Films. 286 (1996) 1-31.
DOI: 10.1016/s0040-6090(96)08905-5
Google Scholar
[6]
S. Suresh, Modeling and design of multi-layered and graded materials, Prog. Mater. Sci. 42 (1997) 243-251.
Google Scholar
[7]
D. Harach, K. Vecchio, Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 32 (2001) 1493-1505.
DOI: 10.1007/s11661-001-0237-0
Google Scholar
[8]
R. Adharapurapu, K. Vecchio, F.C. Jiang, A. Rohatgi, Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti-Al3Ti metal-intermetallic laminate composites, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 36 (2005).
DOI: 10.1007/s11661-005-0251-8
Google Scholar
[9]
T. Hanamura, K. Hashimoto, Ductility improvement of direct-cast gamma TiAl-based alloy sheet, Mater. Trans. 38 (1997) 599-606.
DOI: 10.2320/matertrans1989.38.599
Google Scholar
[10]
A. Rohatgi, D. Harach, K. Vecchio, K. Harvey, Resistance-curve and fracture behavior of Ti-Al3Ti metallic-intermetallic laminate (MIL) composites, Acta Mater. 51 (2003) 2933-2957.
DOI: 10.1016/s1359-6454(03)00108-3
Google Scholar
[11]
F.J.J. van Loo, G.D. Rieck, Diffusion in the titanium-aluminium system-II. Interdiffusion in the composition range between 25 and 100 at. % Ti, Acta Mater. 21 (1973) 73-84.
DOI: 10.1016/0001-6160(73)90221-6
Google Scholar
[12]
F.J.J. van Loo G.D. Rieck, Diffusion in the titanium-aluminium system-I. Interdiffusion between solid Al and Ti or Ti-Al alloys, Acta Mater. 21 (1973) 61-71.
DOI: 10.1016/0001-6160(73)90220-4
Google Scholar
[13]
J.G. Luo, V.L. Acoff, Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 379 (2004) 164-172.
DOI: 10.1016/j.msea.2004.01.021
Google Scholar
[14]
L. Xu, Y.Y. Cui, Y.L. Hao, R. Yang, Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 435-436 (2006) 638-647.
DOI: 10.1016/j.msea.2006.07.077
Google Scholar
[15]
Y.Q. Zhao, Y.B. Sun, D. Zhang, C.Y. Liu, H.Y. Diao, C.L. Ma, Multilayered Ti-Al intermetallic sheets fabricated by cold rolling and annealing of titanium and aluminum foils, Trans. Nonferrous Met. Soc. China. 21 (2011) 1722-1727.
DOI: 10.1016/s1003-6326(11)60921-7
Google Scholar
[16]
H. Fukutomi, M. Nakamura, T. Suzuki, S. Takagi, S. Kikuchi, Void formation by the reactive diffusion of titanium and aluminum foils, Mater. Trans. 41 (2000) 1244-1246.
DOI: 10.2320/matertrans1989.41.1244
Google Scholar
[17]
Y. Jiang, C.P. Deng, Y.H. He, Y. Zhao, N.P. Xu, J. Zou, B.Y. Huang, C.T. Liu, Reactive synthesis of microporous titanium-aluminide membranes, Mater. Lett. 63 (2009) 22-24.
DOI: 10.1016/j.matlet.2008.08.053
Google Scholar
[18]
H.C. Yi, A. Petric, J.J. Moore, Effect of heating rate on the combustion synthesis of Ti-Al intermetallic compounds, J. Mater. Sci. 27 (1992) 6797-6806.
DOI: 10.1007/bf01165971
Google Scholar
[19]
L.M. Peng, J.H. Wang, H. Li, J.H. Zhao, L. H. He, Synthesis and microstructural characterization of Ti-Al3Ti metal-intermetallic laminate (MIL) composites, Scr. Mater. 52 (2005) 243-248.
DOI: 10.1016/j.scriptamat.2004.09.010
Google Scholar
[20]
A. Laik, K. Bhanumurthy, G.B. Kale, Intermetallics in the Zr-Al diffusion zone, Intermetallics. 12 (2004) 69-74.
DOI: 10.1016/j.intermet.2003.09.002
Google Scholar
[21]
W.Y. Yang, G.C. Weatherly, A study of combustion synthesis of Ti-Al intermetallic compounds, J. Mater. Sci. 31 (1996) 3707-3713.
DOI: 10.1007/bf00352784
Google Scholar
[22]
Y. Ma, Q.C. Fan, J.J. Zhang, J. Shi, G.Q. Xiao, M.Z. Gu, Microstructural evolution during self-propagating high-temperature synthesis of Ti-Al system, J. Wuhan Univ. Technol. -Mat. Sci. Edit. 23 (2008) 381-385.
DOI: 10.1007/s11595-007-3281-6
Google Scholar