Preparation of Multilayered Ti-Al Alloys by Solid Reaction

Article Preview

Abstract:

The multilayered materials with different combinations of Ti, Al and Ti-Al intermetallics were prepared by heat treatment and hot pressing (HP) with elemental foils. The microstructures and phase formation of the obtained samples were detected by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), energy dispersive spectroscopy (EDS) and X-ray diffractometer (XRD). When the HP is applied under the melt point of aluminum, aluminum is the only diffusive element across the oxide films on the surface of the initial foils; however, some unusual TiAl3 particles are found in the multilayered structure due to the broken of oxide films; after hot pressing for 4 hours, all the aluminum was consumed; many voids exist at the centerline of TiAl3 layers, which are mainly caused by Kirkendall effect and the difference of molar volumes between reactants and products; before the aluminum is completely consumed, TiAl3 is the only product in the solid reaction under the melting temperature of aluminum; however, other Ti-Al intermetallics like Ti3Al and TiAl are formed in the updated temperature diffusion after aluminum is consumed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 747-748)

Pages:

1-8

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Vecchio, Synthetic multifunctional metallic-intermetallic laminate composites, JOM. 57(2005) 25-31.

DOI: 10.1007/s11837-005-0229-4

Google Scholar

[2] D.P. Adams, M. Vill, J. Tao, J.C. Bilello, S.M. Yalisove, Controlling strength and toughness of multilayer films: A new multiscalar approach, J. Appl. Phys. 74 (1993) 1015-1021.

DOI: 10.1063/1.354947

Google Scholar

[3] R.G. Rowe, D.W. Skelly, M. Larsen, J. Heathcote, G.R. Odette, G.E. Lucas, Microlaminated high temperature intermetallic composites, Scr. Mater. 31 (1994) 1487-1492.

DOI: 10.1016/0956-716x(94)90061-2

Google Scholar

[4] T. Chartier, D. Merle, J.L. Besson, Laminar ceramic composites, J. Eur. Ceram. Soc. 15 (1995) 101-107.

Google Scholar

[5] G.S. Was, T. Foecke, Deformation and fracture in microlaminates, Thin Solid Films. 286 (1996) 1-31.

DOI: 10.1016/s0040-6090(96)08905-5

Google Scholar

[6] S. Suresh, Modeling and design of multi-layered and graded materials, Prog. Mater. Sci. 42 (1997) 243-251.

Google Scholar

[7] D. Harach, K. Vecchio, Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 32 (2001) 1493-1505.

DOI: 10.1007/s11661-001-0237-0

Google Scholar

[8] R. Adharapurapu, K. Vecchio, F.C. Jiang, A. Rohatgi, Effects of ductile laminate thickness, volume fraction, and orientation on fatigue-crack propagation in Ti-Al3Ti metal-intermetallic laminate composites, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 36 (2005).

DOI: 10.1007/s11661-005-0251-8

Google Scholar

[9] T. Hanamura, K. Hashimoto, Ductility improvement of direct-cast gamma TiAl-based alloy sheet, Mater. Trans. 38 (1997) 599-606.

DOI: 10.2320/matertrans1989.38.599

Google Scholar

[10] A. Rohatgi, D. Harach, K. Vecchio, K. Harvey, Resistance-curve and fracture behavior of Ti-Al3Ti metallic-intermetallic laminate (MIL) composites, Acta Mater. 51 (2003) 2933-2957.

DOI: 10.1016/s1359-6454(03)00108-3

Google Scholar

[11] F.J.J. van Loo, G.D. Rieck, Diffusion in the titanium-aluminium system-II. Interdiffusion in the composition range between 25 and 100 at. % Ti, Acta Mater. 21 (1973) 73-84.

DOI: 10.1016/0001-6160(73)90221-6

Google Scholar

[12] F.J.J. van Loo G.D. Rieck, Diffusion in the titanium-aluminium system-I. Interdiffusion between solid Al and Ti or Ti-Al alloys, Acta Mater. 21 (1973) 61-71.

DOI: 10.1016/0001-6160(73)90220-4

Google Scholar

[13] J.G. Luo, V.L. Acoff, Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 379 (2004) 164-172.

DOI: 10.1016/j.msea.2004.01.021

Google Scholar

[14] L. Xu, Y.Y. Cui, Y.L. Hao, R. Yang, Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 435-436 (2006) 638-647.

DOI: 10.1016/j.msea.2006.07.077

Google Scholar

[15] Y.Q. Zhao, Y.B. Sun, D. Zhang, C.Y. Liu, H.Y. Diao, C.L. Ma, Multilayered Ti-Al intermetallic sheets fabricated by cold rolling and annealing of titanium and aluminum foils, Trans. Nonferrous Met. Soc. China. 21 (2011) 1722-1727.

DOI: 10.1016/s1003-6326(11)60921-7

Google Scholar

[16] H. Fukutomi, M. Nakamura, T. Suzuki, S. Takagi, S. Kikuchi, Void formation by the reactive diffusion of titanium and aluminum foils, Mater. Trans. 41 (2000) 1244-1246.

DOI: 10.2320/matertrans1989.41.1244

Google Scholar

[17] Y. Jiang, C.P. Deng, Y.H. He, Y. Zhao, N.P. Xu, J. Zou, B.Y. Huang, C.T. Liu, Reactive synthesis of microporous titanium-aluminide membranes, Mater. Lett. 63 (2009) 22-24.

DOI: 10.1016/j.matlet.2008.08.053

Google Scholar

[18] H.C. Yi, A. Petric, J.J. Moore, Effect of heating rate on the combustion synthesis of Ti-Al intermetallic compounds, J. Mater. Sci. 27 (1992) 6797-6806.

DOI: 10.1007/bf01165971

Google Scholar

[19] L.M. Peng, J.H. Wang, H. Li, J.H. Zhao, L. H. He, Synthesis and microstructural characterization of Ti-Al3Ti metal-intermetallic laminate (MIL) composites, Scr. Mater. 52 (2005) 243-248.

DOI: 10.1016/j.scriptamat.2004.09.010

Google Scholar

[20] A. Laik, K. Bhanumurthy, G.B. Kale, Intermetallics in the Zr-Al diffusion zone, Intermetallics. 12 (2004) 69-74.

DOI: 10.1016/j.intermet.2003.09.002

Google Scholar

[21] W.Y. Yang, G.C. Weatherly, A study of combustion synthesis of Ti-Al intermetallic compounds, J. Mater. Sci. 31 (1996) 3707-3713.

DOI: 10.1007/bf00352784

Google Scholar

[22] Y. Ma, Q.C. Fan, J.J. Zhang, J. Shi, G.Q. Xiao, M.Z. Gu, Microstructural evolution during self-propagating high-temperature synthesis of Ti-Al system, J. Wuhan Univ. Technol. -Mat. Sci. Edit. 23 (2008) 381-385.

DOI: 10.1007/s11595-007-3281-6

Google Scholar