[1]
Y.W. Kim, Ordered Intermetallic Alloy Part III: Gamma Titanium Aluminides, JOM 46 (1994) 30-39.
DOI: 10.1007/bf03220745
Google Scholar
[2]
F. Appel, R. Wagner, Microstructure and deformation of two-phase g-titanium aluminides, Materials Science and Engineering R 22 (1998) 187-268.
DOI: 10.1016/s0927-796x(97)00018-1
Google Scholar
[3]
J. Kumpfert, Y.W. Kim, D.M. Dimiduk, Effect of microstructure on fatigue and tensile properties of the gamma TiAl alloy Ti-46. 5Al-3. 0Nb-2. 1Cr-0. 2W, Materials Science and Engineering A 192-193 (1995) 465-473.
DOI: 10.1016/0921-5093(94)03263-7
Google Scholar
[4]
Y. Wang, D. Lin, C.C. Law, Brittle-to-ductile transition temperature and its strain rate sensitivity in a two-phase titanium aluminide with near lamellar microstructure, Journal of Materials Science 34 (1999) 3155-3159.
Google Scholar
[5]
X. Zan, Y.H. He, Y. Wang, Z.X. Lu, Y.M. Xia, Tensile impact behavior and deformation mechanism of duplex TiAl intermetallics at elevated temperatures, Journal of Materials Science 45 (2010) 6446-6454.
DOI: 10.1007/s10853-010-4730-y
Google Scholar
[6]
S.A. Maloy, G.T. Gray III, High strain rate deformation of Ti48Al2Nb2Cr, Acta Materialia 44 (1996) 1741-1756.
DOI: 10.1016/1359-6454(95)00329-0
Google Scholar
[7]
Z. Horita, M. Furukawa, M. Nemoto, et al., Superplastic forming at high strain rates after severe plastic deformation, Acta Materialia 48 (2000) 3633-3640.
DOI: 10.1016/s1359-6454(00)00182-8
Google Scholar
[8]
M.A. Meyers, O. Vohringer, V.A. Lubarda, The onset of twinning in metals: a constitutive description, Acta Materialia, 49 (2001) 4025-4039.
DOI: 10.1016/s1359-6454(01)00300-7
Google Scholar
[9]
R. Reed-Hill, R. Abbaschian, Physical Metallurgy Principles. third ed., Boston, (1992).
Google Scholar