Isochronal Aging Hardening of the Mg-8Gd-3Y-0.5Zr Alloy after Cold Rolling

Article Preview

Abstract:

By transmission electron microscopy (TEM) and optical microscopy (OM), the isochronal aging hardening law and microstructure have been studied for the Mg-8Gd-3Y-0.5Zr alloy after cold rolling. During isochronal aging process (heated from room temperature to 500 with the heating rate of 1/min), there are two peak hardness temperature points, which are corresponding to the large number of precipitation of β and β phases, and the peak aging time of the alloy substantially decreased with the increase of deformation reduction. The β phases started to precipitate at temperatures of 145, 134, 127 and 124 in the alloy after cold rolling with the reduction of 0%, 8%, 15% and 22%. The heating rate greatly affected the starting precipitation of metastable phases. β phases started to precipitate at temperatures of 109 and 124 with the reduction of 22% and with the heating rates of 3 /min and 30 /min.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 747-748)

Pages:

333-339

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.J. Polmea, Light alloys 3rd ed. Metallurgy of the Light Metals, Edward Arnold, London, 1995, pp.231-232.

Google Scholar

[2] C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, A. Pisch, Hardening precipitation in a Mg-4Y-3RE alloy, Acta. Mater. 51(2003) 5335-5348.

DOI: 10.1016/s1359-6454(03)00391-4

Google Scholar

[3] I.A. Anyanwu, S. Kamado and Y. Kojima, Aging Characteristics and High Temperature Tensile Properties of Mg-Gd-Y-Zr Alloys, Mater. Trans. JIM 42(2001) 1206-1211.

DOI: 10.2320/matertrans.42.1206

Google Scholar

[4] X. Gao, S.M. He, X.Q. Zeng, L.M. Peng, W.J. Ding, J.F. Nie, Microstructure evolution in a Mg–15Gd–0. 5Zr (wt. %) alloy during isothermal aging at 250℃, Mater. Sci. Eng.A. 431(2006) 322–327.

DOI: 10.1016/j.msea.2006.06.018

Google Scholar

[5] L.L. Rokhlin, Magnesium Alloys Containing Rear Earth Metals, Taylor and Francis, London, (2003).

Google Scholar

[6] S. Kamado, Y. Kojima, R. Ninomiya, K. Kubota, Proceedings of the 3th Inter. Mg conference, 1996, Institute of Materials, Manchester, UK, 1997, 327-342.

Google Scholar

[7] T. Honma, T. Ohkubo, K. Hono, S. Kamado, Chemistry of nanoscale precipitates in Mg-2. 1 Gd-0. 6 Y-0. 2 Zr(at. %) alloy investigated by the atom probe technique, Mater. Sci. Eng.A. 395(2006) 301-306.

DOI: 10.1016/j.msea.2004.12.035

Google Scholar

[8] P. Vostry, B. Smola, I. Stulikova, F.V. Buch, B.L. Mordike, Microstructure evolution in isochronally heat treated Mg-Gdalloys, Phys. Stat. Sol. (a). 175(1999) 491-500.

DOI: 10.1002/(sici)1521-396x(199910)175:2<491::aid-pssa491>3.0.co;2-f

Google Scholar

[9] S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding, Precipitation in Mg–10Gd–3Y–0. 4Zr (wt. %) alloy during isothermal ageing at 250℃, J. Alloys Compd. 421(2006) 309-313.

DOI: 10.1016/j.jallcom.2005.11.046

Google Scholar

[10] A. Deschamps, F. Livet, Y. Brechet, Influence of pre-deformation on ageing in an Al-Zn-Mg alloy—Microstructure evolution and mechanical properties, Acta. Mater. 47(1999) 281-292.

DOI: 10.1016/s1359-6454(98)00293-6

Google Scholar

[11] G.K. Quainoo, S. Yannacopoulos, The effect of cold work on the precipitation kinetics of AA6111 aluminum, J. Mater. Sci. 39(2004) 6495-6502.

DOI: 10.1023/b:jmsc.0000044888.01854.e1

Google Scholar

[12] J. Čížek, I. Procházka, B. Smola, I. Stulíková, V. Očenášek, Influence of deformation on precipitation process in Mg-15 wt. %Gd alloy, J. Alloys. Compd. 430(2007) 92-96.

DOI: 10.1016/j.jallcom.2006.03.097

Google Scholar

[13] J.F. Nie, B.C. Muddle, Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy, Acta. Mater. 48(2000) 1691-1703.

DOI: 10.1016/s1359-6454(00)00013-6

Google Scholar

[14] T. Hilditch, J.F. Nie, B.C. Muddle, The effect of cold work on precipitation in alloy WE54, Proc Magnesium Alloys and Their Applications (ed. by B.L. Mordike and K.U. Kainer), Werkstoff-Informat., Frankfurt, 1998, pp.339-344.

Google Scholar

[15] K.Y. Zheng, J. Dong, X.Q. Zeng, W.J. Ding, Effect of pre-deformation on aging characteristics and mechanical properties of a Mg-Gd-Nd-Zr alloy, Mater. Sci. Eng. A. 491(2008) 103-109.

DOI: 10.1016/j.msea.2008.01.067

Google Scholar

[16] P.J. Apps, H. Karimzadeh, J.F. King, G.W. Lorimer, Precipitation reactions in Magnesium-rare earthalloys containing Yttrium, Gadolinium or Dysprosium, Scripta Mater. 48(2003) 1023-1028.

DOI: 10.1016/s1359-6462(02)00596-1

Google Scholar

[17] P. Vostry, B. Smola, I. Stulikova, F.V. Buch, B.L. Mordike, Microstructure evolution in isochronally heat treated Mg-Gd alloys, Phys. Stat. Sol. (a). 175 (1999) 491-500.

DOI: 10.1002/(sici)1521-396x(199910)175:2<491::aid-pssa491>3.0.co;2-f

Google Scholar

[18] J. F. Nie, B. C. Muddle, Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy, Acta Mater. 48 (2000) 1691-1703.

DOI: 10.1016/s1359-6454(00)00013-6

Google Scholar