[1]
M.M. Avedesian, H. Baker, Magnesium and Magnesium Alloys — ASM Speciality Handbook, ASM International, Ohio, (1999).
Google Scholar
[2]
B.L. Mordike, T. Ebert, Magnesium: Properties — applications — potential, Mater. Sci. Eng., A 302 (2001) 37-45.
Google Scholar
[3]
D.S. Mehta, S.H. Masood, W.Q. Song, Investigation of wear properties of magnesium and aluminum alloys for automotive applications, J. Mater. Process. Technol. 156 (2004) 1526-1531.
DOI: 10.1016/j.jmatprotec.2004.04.247
Google Scholar
[4]
R.B. Figueiredo, T.G. Langdon, Principles of grain refinement and superplastic flow in magnesium alloys processed by ECAP, Mater. Sci. Eng., A 501 (2009) 105-114.
DOI: 10.1016/j.msea.2008.09.058
Google Scholar
[5]
D.G. Kim, K.M. Lee, J.S. Lee, Y.O. Yoon, H.T. Son, Evolution of microstructures and textures in magnesium AZ31 alloys deformed by normal and cross-roll rolling, Mater. Lett. 75 (2012) 122-125.
DOI: 10.1016/j.matlet.2012.01.141
Google Scholar
[6]
Q.Y. Long, H.Z. Yin, Acoustic emission during deformation of dual-phase steels, Metall. Mater. Trans. A 21 (1990) 373-379.
Google Scholar
[7]
M. Friesel, S.H. Carpenter, Determination of the sources of acoustic emission generated during the deformation of magnesium, J. Acous. Emis., 3(1), pp.11-17.
Google Scholar
[8]
E. Siegel, Burst Acoustic Emission During the Bauschinger Effect in F.C.C. and H.C.P. Metals and Alloys , Proceedings of the IEEE Ultrasonic Symposium, Monterey, CA, 1973, pp.204-208.
DOI: 10.1109/ultsym.1973.196183
Google Scholar
[9]
R. Gehrman, M.M. Frommert, G. Gottstein, Texture effects on plastic deformation of magnesium, Mater. Sci. Eng., A395 (2005) 338-349.
Google Scholar
[10]
A. Staroselsky, L. Anand, A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B, Int. J. Plast. 19 (2003) 1843-1864.
DOI: 10.1016/s0749-6419(03)00039-1
Google Scholar
[11]
Y. Chino, K. Kimura, M. Hakamada, M. Mabuchi, Mechanical anisotropy due to twinning in an extruded AZ31 Mg alloy, Mater. Sci. Eng., A485 (2008) 311-317.
DOI: 10.1016/j.msea.2007.07.076
Google Scholar
[12]
S.M. Yin, S.D. Wu, S.X. Li, Tensile-compressive yield asymmetry and microstructure evolution during deformation of coarse-grained AZ31D magnesium alloy, Chinese Journal of Materials Research, 21 (2007 )38-42.
Google Scholar
[13]
P. Dobroň, J. Bohlen, F. Chmelík, P. Lukáč, D. Letzig, K.U. Kainer, Acoustic emission during stress relaxation of pure magnesium and AZ magnesium alloys, Mater. Sci. Eng., A 462 (2007) 307-310.
DOI: 10.1016/j.msea.2005.12.111
Google Scholar
[14]
Z.Y. Han, H.Y. Luo, H.W. Wang, Effects of strain rate and notch on acoustic emission during the tensile deformation of a discontinuous yielding material, Mater. Sci. Eng., A528 (2011) 4372-4380.
DOI: 10.1016/j.msea.2011.02.042
Google Scholar
[15]
A. Vinogradov, D.L. Merson, V. Patlan, S. Hashimoto, Effect of solid solution hardening and stacking fault energy on plastic flow and acoustic emission in Cu/Ge alloys, Mater. Sci. Eng., A341 (2003) 57-73.
DOI: 10.1016/s0921-5093(02)00214-9
Google Scholar
[16]
P. Antonaci, P. Bocca, D. Masera, Fatigue crack propagation monitoring by Acoustic Emission signal analysis, Eng. Fract. MECH. 81 (2012) 26-32.
DOI: 10.1016/j.engfracmech.2011.09.017
Google Scholar
[17]
G. Kalogiannakis, J. Quintelier, P. De Baets, J. Degrieck, D. Van Hemelrijck, Identification of wear mechanisms of glass/polyester composites by means of acoustic emission, Wear 264 (2008) 235-244.
DOI: 10.1016/j.wear.2007.03.019
Google Scholar
[18]
Y.P. Li, M. Enoki, Twinning behavior of pure magnesium quantitatively investigated by acoustic emission, Mater. Sci. Eng., A536 (2012) 8-13.
DOI: 10.1016/j.msea.2011.10.010
Google Scholar