Effects of Solid Solution Treatments on Microstructures and Tensile Properties of a Mg-Y-Zn-Cu Alloy

Article Preview

Abstract:

In this study, a Mg-2.1Y-0.5Zn-0.6Cu-0.1Zr (WZC200, in at. %) alloy was prepared by permanent casting method. On the basis of thermal analysis results during solidification process, two temperatures (T1/763K and T2/773K) were selected for subsequent solid solution treatments. Microstructure evolution and the tensile property changes after T4 treatment at T1 and T2 for different holding time were also investigated in this study. The tensile testing results showed that yield strength and ultimate tensile strength were improved with the fraction increase of the lamellae-shaped LPSO phase in the grain interiors, rather than the total fraction of LPSO phase.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 747-748)

Pages:

449-456

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto, Rapidly Solidified Powder Metallurgy Mg97Zn1Y2 Alloys with Excellent Tensile Yield Strength above 600 MPa, Mater. Trans. 42 (2001) 1172-1176.

DOI: 10.2320/matertrans.42.1172

Google Scholar

[2] A. Inouea, Y. Kawamura, M. Matsushita, K. Hayashi, J. Koike, Novel hexagonal structure and ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system, JOURNAL OF MATERIAL RESEARCH. 16 (2001) 1894-(1900).

DOI: 10.1557/jmr.2001.0260

Google Scholar

[3] Z.P. Luo, S.Q. Zhang, High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg-Zn-Zr-Y magnesium alloy, J. Mater. Sci. Lett. 19 (2000) 813-815.

Google Scholar

[4] T. Itoi, T. Seimiya, Y. Kawamura, M. Hirohashi, Long period stacking structures observed in Mg97Zn1Y2 alloy, Scripta Mater. 51 (2004) 107-111.

DOI: 10.1016/j.scriptamat.2004.04.003

Google Scholar

[5] M. Matsuda, S. Ii, Y. Kawamura, Y. Ikuhara, M. Nishida, Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy, Mater. Sci. Eng. A. 393 (2005) 269-274.

DOI: 10.1016/j.msea.2004.10.040

Google Scholar

[6] J. Lee, K. Sato, T.J. Konno, K. Hiraga, Stabilization of Stacking Faults and a Long Period Stacking Phase Dispersed in α-Mg Crystalline Grains of Mg-0. 7 at% Zn-1. 4 at% Y Alloy, Mater. Trans. 50 (2009) 222-225.

DOI: 10.2320/matertrans.mrp2008335

Google Scholar

[7] S. Yoshimoto, M. Yamasaki, Y. Kawamura, Microstructure and mechanical properties of extruded Mg-Zn-Y alloys with 14H long period ordered structure, Mater. Trans. . 47 (2006) 959-965.

DOI: 10.2320/matertrans.47.959

Google Scholar

[8] M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga, Y. Kawamura, Formation of 14H long period stacking ordered structure and profuse stacking faults in Mg–Zn–Gd alloys during isothermal aging at high temperature, Acta Materialia. 55 (2007) 6798-6805.

DOI: 10.1016/j.actamat.2007.08.033

Google Scholar

[9] J.F. Nie, K. Oh-ishi, X. Gao, K. Hono, Solute segregation and precipitation in a creep-resistant Mg–Gd–Zn alloy, Acta Materialia. 56 (2008) 6061-6076.

DOI: 10.1016/j.actamat.2008.08.025

Google Scholar

[10] M. Yamasaki, T. Anan, S. Yoshimoto, Y. Kawamura, Mechanical properties of warm-extruded Mg–Zn–Gd alloy with coherent 14H long periodic stacking ordered structure precipitate, Scripta Mater. , 53 (2005) 799-803.

DOI: 10.1016/j.scriptamat.2005.06.006

Google Scholar

[11] K. Yamada, Y. Okubo, M. Shiono, H. Watanabe, S. Kamado, Y. Kojima, Alloy development of high toughness Mg-Gd-Y-Zn-Zr alloys, Mater. Trans., 47 (2006) 1066-1070.

DOI: 10.2320/matertrans.47.1066

Google Scholar

[12] K. Amiya, T. Ohsuna, A. Inoue, Long-Period Hexagonal Structures in Melt-Spun Mg97Ln2Zn1 (Ln= Lanthanide Metal) Alloys, Mater. Trans. , 44 (2003) 2151-2156.

DOI: 10.2320/matertrans.44.2151

Google Scholar

[13] Y. Kawamura, T. Kasahara, S. Izumi, M. Yamasaki, Elevated temperature Mg97Y2Cu1 alloy with long period ordered structure, Scripta Mater., 5 (2006) 453.

DOI: 10.1016/j.scriptamat.2006.05.011

Google Scholar

[14] Y.M. Zhu, M. Weyland, A.J. Morton, K. Oh-ishi, K. Hono, J.F. Nie, The building block of long-period structures in Mg–RE–Zn alloys, Scripta Mater., 60 (2009 ) 980-983.

DOI: 10.1016/j.scriptamat.2009.02.029

Google Scholar

[15] Binary Alloy Phase Diagrams, ASM International, Materials Park, OH, (1990).

Google Scholar

[16] G.L. Song, D. Stjohn, The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ, J. Light Met., 2 (2002) 1-16.

DOI: 10.1016/s1471-5317(02)00008-1

Google Scholar

[17] Z.H. Huang, S.M. Liang, R.S. Chen, E.H. Han, Solidification pathways and constituent phases of Mg–Zn–Y–Zr alloys, J. Alloys Compd., 468 (2009) 170-178.

DOI: 10.1016/j.jallcom.2008.01.034

Google Scholar

[18] S. M. Liang, Y. Q. Ma, R. S. Chen, E.H. Han, Optimization of heat treatment in AZ64 magnesium alloy, Mater. Trans., 49 (2008) 986-989.

DOI: 10.2320/matertrans.mc200756

Google Scholar

[19] X. Hui, W. Dong, G.L. Chen, K.F. Yao, Formation, microstructure and properties of long-period order structure reinforced Mg-based bulk metallic glass composites, Acta Mater., 55 (2007) 907-920.

DOI: 10.1016/j.actamat.2006.09.012

Google Scholar

[20] B.Q. Shi, R.S. Chen, W. Ke, Effects of forging processing on the texture and tensile properties of ECAEed AZ80 magnesium alloy, Mater. Sci. Eng. A, 546 (2012) 323-327.

DOI: 10.1016/j.msea.2012.03.036

Google Scholar

[21] K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy, Acta Mater., 58 (2010) 6282-6293.

DOI: 10.1016/j.actamat.2010.07.050

Google Scholar

[22] S. ZHANG, G. Y. YUAN, C. LU, W.J. DING, EFFECT OF COOLING RATE ON THE FORMATION OF 14H–LPSO STRUCTURE IN GWZ1032K ALLOY, ACTA METALLURGICA SINICA, 10 (2010) 1192-1199.

DOI: 10.3724/sp.j.1037.2010.01192

Google Scholar