[1]
REED R, The superalloys: Fundamentals and applications [M]. London: Cambridge University Press, (2006).
Google Scholar
[2]
ANGENETE J, STILLER K, A comparative study of two inward grown Pt modified Al diffusion coatings on a single crystal Ni based superalloy [J]. Material Science and Engineering A, 2001, 316: 182−194.
DOI: 10.1016/s0921-5093(01)01236-9
Google Scholar
[3]
F.S. Liao C.W. Hsu, D. Gan, P. Shen, S.Z. Liao, Mi-crostructures of first-stagealuminized coatings on Nickel-based superalloys. Materials Science and En-gineering A1990; 125: 215-221.
DOI: 10.1016/0921-5093(90)90171-x
Google Scholar
[4]
A.B. Smith, A. Kempster, J. Smith, Vapour aluminide coating of internal coolingchannels, in turbine blades and vanes. Surface & Coatings Technology1999; 121: 112-117.
DOI: 10.1016/s0257-8972(99)00346-1
Google Scholar
[5]
E. Godlewska, K. Godlewski, Chromalumizing of nickel and its alloys, Oxid. Met. 3 (1984) 117–131.
DOI: 10.1007/bf00656900
Google Scholar
[6]
H.W. Grunling, R. Bauer, The role of silicon in corrosion-resistant high temperature coatings, Thin Solid Films 95 (1982) 3–20.
DOI: 10.1016/0040-6090(82)90578-8
Google Scholar
[7]
K. Shirvani, M. Saremi, A. Nishikata, T. Tsuru, The effect of silicon on cyclic oxidation behavior of aluminide coatings on superalloy IN-738LC, Mater. Sci. Forum 461–464 (2004) 335–342.
DOI: 10.4028/www.scientific.net/msf.461-464.335
Google Scholar
[8]
J. Angenete, K. Stiller, A comparative study of two inward grown Pt modified Al diffusion coating on a single crystal Ni base superalloy, Mater. Sci. Eng. A A316(2001) 182–194.
DOI: 10.1016/s0921-5093(01)01236-9
Google Scholar
[9]
S.M. Jiang, X. Peng, Z.B. Bao, S.C. Liu, Q.M. Wang, J. Gong, C. Sun, Preparationand hot corrosion behaviour of a MCrAlY+AlSiY composite coating. CorrosionScience 2008; 50: 3213-3220.
DOI: 10.1016/j.corsci.2008.08.018
Google Scholar
[10]
J.G. Smeggil, Some comments on the role of yttrium in protective oxide scale adherence, Mater. Sci. Eng. A 87 (1987) 261–265.
DOI: 10.1016/0025-5416(87)90387-9
Google Scholar
[11]
Z.D. Xiang, P.K. Datta, Relationship between pack chemistry and aluminide coating formation for low-temperature aluminisation of alloy steels, Acta Mater. 54 (2006) 4453–4463.
DOI: 10.1016/j.actamat.2006.05.032
Google Scholar
[12]
R. Mevrel, C. Duret, R. Pichoir, Pack cementation processes, Mater. Sci. Technol. 2 (1986) 201–206.
Google Scholar
[13]
G.W. Goward, D.H. Boone, Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys, Oxid. Met. 3 (1971) 475–495.
DOI: 10.1007/bf00604047
Google Scholar
[14]
D. Strauss, G. Muller, G. Schumacher, V. Engelko, W. Stamm, D. Clemens, W.J. Quaddakers, Oxide scale growth on MCrAlY bond coatings after pulsed elec-tron beam treatment and deposition of EBPVD-TBC. Surface & Coatings Technology2001; 135: 196-201.
DOI: 10.1016/s0257-8972(00)00916-6
Google Scholar
[15]
Z. Liu, W. Gao, F. Wang, Oxidation behaviour of FeAl intermetallic coatings produced by magnetron sputter deposition. Scripta Materialia 1998; 39: 1497-1502.
DOI: 10.1016/s1359-6462(98)00360-1
Google Scholar
[16]
D. Clemens, H. Nickel, TEM and SNMS studies of protective alumina scales on NiCrAlY-alloys, J. Anal. Chem. 355 (1996) 703–706.
DOI: 10.1007/s0021663550703
Google Scholar
[17]
D. Toma, W. Brandl, U. Koster, The Characteristics of Alumina Scales Formed on HVOF-Sprayed MCrAlY Coatings. Oxidation ofMetals 1999; 55: 125-137.
DOI: 10.1016/s0257-8972(98)00613-6
Google Scholar
[18]
G.B. Abderrazik, G. Moulin, A.M. Huntz, E.W.A. Young, J.H.W. Wit, Growth mechanism of Al2O3 scales developed on FeCrAl alloys, Solid State Ionics 22(1987) 285–294.
DOI: 10.1016/0167-2738(87)90146-9
Google Scholar
[19]
K. Zhang, Q.M. Wang, C. Sun, F.H. Wang, Preparation and oxidation behavior of NiCrAlYSi coating on a cobalt-base superalloy K40S, Corros. Sci. 50 (2008)1707–1715.
DOI: 10.1016/j.corsci.2008.01.033
Google Scholar
[20]
YOON J K, BYUN J Y, KIM G H, et al., Growth kinetics of three Mo-silicide layers formed by chemical vapor deposition of Si on Mo substrate [J]. Surface and Coatings Technology, 2002, 155(1): 85−95.
DOI: 10.1016/s0257-8972(02)00015-4
Google Scholar
[21]
T. Takahashi, D.C. Dunand, Nickel aluminide containing refractory-metal dispersoids 2: microstructure and properties, Mater. Sci. Eng. A 192/193(1995) 195–203.
DOI: 10.1016/0921-5093(94)03235-1
Google Scholar
[22]
V. Shankar, A.L.E. Terrance, S. Venkadesan, The ef-fect of diffusion barrierformation on the kinetics of aluminizing in inconel-718. Journal of Materials Sci-ence1994; 29: 5424-5428.
DOI: 10.1007/bf01171556
Google Scholar