Improvement in Oxidation Resistance of Ni3Al Based Single Crystal Superalloy IC32 by NiAlHfSi Coating

Article Preview

Abstract:

In order to improve the oxidation performance of IC32, the NiAlHfSi coating was deposited on the alloy by electron beam physical vapor deposition (EB-PVD) method. The oxidation resistance of the coated alloy at 1423 K was investigated. The microstructures of the samples before and after oxidation were examined by SEM, XRD and EPMA. It was found that the oxide scales compactly formed on the surface of the coating, and the oxidation mainly consisted of Al2O3 and NiAl2O4. Phase transformation occurred from β-NiAl to γ-Ni3Al in the coating after oxidation for extend periods. The diffusion and oxidation of Mo were prevented effectively by the coating, which improved the oxidation performance of IC32 significantly.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 747-748)

Pages:

604-612

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.C. Zhao, J.H. Westbrook, Ultrahigh-temperature materials for jet engines. MRS Bulletin, 2003, 28(9): 622−627.

DOI: 10.1557/mrs2003.189

Google Scholar

[2] Z.Q. Hu, L.R. Liu, T. Jin, X.F. Sun, Development of the Ni-base single crystal superalloys. Aircraft Engine, 2005, 31(3): 1−7.

Google Scholar

[3] H.X. Dong, Y.H. He, Progress in research on Ni3Al intermetallic alloys. Materials Science and Engineering of Powder Metallurgy, 2009, 14(2): 83−88. (in Chinese).

Google Scholar

[4] Y.F. Han, S.S. Li, Y. Jin, Effect of 900−1150°C aging on the microstructure and mechanical properties of a DS casting Ni3Al-base alloy IC6. Materials Science and Engineering A, 1995, 192−193 (Part 2): 899−907.

DOI: 10.1016/0921-5093(94)03305-6

Google Scholar

[5] Y.F. Han, Z.P. Xing, M.C. Chaturvedi, Oxidation resistance and microstructure of Ni−Cr−Al−Y−Si coating on Ni3Al based alloy Materials Science and Engineering A, 1997, 239−240: 871−876.

DOI: 10.1016/s0921-5093(97)00677-1

Google Scholar

[6] S.S. Li, X.Y. Xie, L.W. Jiang, Effects of Ru on microstructure stability and mechanical properties of Ni3Al single crystal alloy. Progress in Natural Science: Materials International, 2011, 21(4): 286−292.

DOI: 10.1016/s1002-0071(12)60059-8

Google Scholar

[7] B. Wang, J. Gong, C Sun, The behavior of MCrAlY coatings on Ni3Al-base superalloy. Materials Science and Engineering A, 2003, 357(1−2): 39−44.

DOI: 10.1016/s0921-5093(03)00254-5

Google Scholar

[8] W. Ueda, D. Vitry, T. Katou, Crystalline MoVO based complex oxides as selective oxidation catalysts of propane. Catalysis Today, 2005, 99(1−2): 43−49.

DOI: 10.1016/j.cattod.2004.09.022

Google Scholar

[9] X. Huo, J.S. Zhang, B.L. Wang, Evaluation of NiCrAlYSi overlay coating on Ni3Al based alloy IC6 after an engine test. Surface and Coatings Technology, 1999, 114(2−3): 174−180.

DOI: 10.1016/s0257-8972(99)00035-3

Google Scholar

[10] J.X. Song, Y.F. Han, S.S. Li, Repair of NiCrAlYSi overlay coating on Ni3Al base alloy IC6. Intermetallics, 2005, 13(3−4): 351−355.

DOI: 10.1016/j.intermet.2004.07.019

Google Scholar

[11] S. Gong, D. Zhang, H. Xu, et al. Thermal barrier coatings with two layer bond coat on intermetallic compound Ni3Al based alloy. Intermetallics, 2005, 13(3−4): 295−299.

DOI: 10.1016/j.intermet.2004.07.021

Google Scholar

[12] M.N. Task, D.E. Kim, Z.K. Liu, Phase stability and oxidation behavior of an alumina scale-forming NiCrAlY alloy. Oxidation of Metals, 2010, 74(3−4): 179−191.

DOI: 10.1007/s11085-010-9206-6

Google Scholar

[13] R.C. Hendricks, R.E. Chupp, S.B. Lattmie, Turbo machine interface sealing. NASA/TM−2005−213633, (2005).

Google Scholar

[14] V. Postolenko, Failure mechanisms of thermal barrier coatings for high temperature gas turbine components under cyclic thermal loading. aus Kiew, Ukraine: Von der Fakultät für Georessourcen und Materialtechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen, (2008).

DOI: 10.1007/978-3-663-04545-8

Google Scholar

[15] Q. Wu, R.B. Yang, Y.X. Wu, S.S. Li, Y Ma, S.K. Gong, A comparative study of four modified Al coatings on Ni3Al-based single crystal superalloy. Progress in Natural Science: Materials International, 2011, 21: 496-505.

DOI: 10.1016/s1002-0071(12)60089-6

Google Scholar

[16] D. Clemens, V. Vosberg, W Hobbs, TEM and SNMS studies of protective alumina scales on NiCrAlY-alloys. Fresenius' Journal of Analytical Chemistry, 1996, 355(5): 703−706.

DOI: 10.1007/s0021663550703

Google Scholar

[17] H.B. Guo, L.D. Sun, H.F. Li, S.K. Gong, High temperature oxidation behavior of hafnium modified NiAl bond coat in EB-PVD thermal barrier coating system. Thin Solid Films, 2008, 516: 5732–5735.

DOI: 10.1016/j.tsf.2007.07.031

Google Scholar

[18] W.J. Brindley, R.A. Miller, Thermal barrier coating life and isothermal oxidation of low-pressure plasma-sprayed bond coat alloys. Surf. & Coat. Technol, 1990, v43 (1-3): 446-457.

DOI: 10.1016/b978-1-85166-813-7.50050-4

Google Scholar

[19] J.K. Yoon, J.Y. Byun, G.H. Kim, Growth kinetics of three Mo-silicide layers formed by chemical vapor deposition of Si on Mo substrate. Surface and Coatings Technology, 2002, 155(1): 85−95.

DOI: 10.1016/s0257-8972(02)00015-4

Google Scholar