[1]
J.C. Zhao, J.H. Westbrook, Ultrahigh-temperature materials for jet engines. MRS Bulletin, 2003, 28(9): 622−627.
DOI: 10.1557/mrs2003.189
Google Scholar
[2]
Z.Q. Hu, L.R. Liu, T. Jin, X.F. Sun, Development of the Ni-base single crystal superalloys. Aircraft Engine, 2005, 31(3): 1−7.
Google Scholar
[3]
H.X. Dong, Y.H. He, Progress in research on Ni3Al intermetallic alloys. Materials Science and Engineering of Powder Metallurgy, 2009, 14(2): 83−88. (in Chinese).
Google Scholar
[4]
Y.F. Han, S.S. Li, Y. Jin, Effect of 900−1150°C aging on the microstructure and mechanical properties of a DS casting Ni3Al-base alloy IC6. Materials Science and Engineering A, 1995, 192−193 (Part 2): 899−907.
DOI: 10.1016/0921-5093(94)03305-6
Google Scholar
[5]
Y.F. Han, Z.P. Xing, M.C. Chaturvedi, Oxidation resistance and microstructure of Ni−Cr−Al−Y−Si coating on Ni3Al based alloy Materials Science and Engineering A, 1997, 239−240: 871−876.
DOI: 10.1016/s0921-5093(97)00677-1
Google Scholar
[6]
S.S. Li, X.Y. Xie, L.W. Jiang, Effects of Ru on microstructure stability and mechanical properties of Ni3Al single crystal alloy. Progress in Natural Science: Materials International, 2011, 21(4): 286−292.
DOI: 10.1016/s1002-0071(12)60059-8
Google Scholar
[7]
B. Wang, J. Gong, C Sun, The behavior of MCrAlY coatings on Ni3Al-base superalloy. Materials Science and Engineering A, 2003, 357(1−2): 39−44.
DOI: 10.1016/s0921-5093(03)00254-5
Google Scholar
[8]
W. Ueda, D. Vitry, T. Katou, Crystalline MoVO based complex oxides as selective oxidation catalysts of propane. Catalysis Today, 2005, 99(1−2): 43−49.
DOI: 10.1016/j.cattod.2004.09.022
Google Scholar
[9]
X. Huo, J.S. Zhang, B.L. Wang, Evaluation of NiCrAlYSi overlay coating on Ni3Al based alloy IC6 after an engine test. Surface and Coatings Technology, 1999, 114(2−3): 174−180.
DOI: 10.1016/s0257-8972(99)00035-3
Google Scholar
[10]
J.X. Song, Y.F. Han, S.S. Li, Repair of NiCrAlYSi overlay coating on Ni3Al base alloy IC6. Intermetallics, 2005, 13(3−4): 351−355.
DOI: 10.1016/j.intermet.2004.07.019
Google Scholar
[11]
S. Gong, D. Zhang, H. Xu, et al. Thermal barrier coatings with two layer bond coat on intermetallic compound Ni3Al based alloy. Intermetallics, 2005, 13(3−4): 295−299.
DOI: 10.1016/j.intermet.2004.07.021
Google Scholar
[12]
M.N. Task, D.E. Kim, Z.K. Liu, Phase stability and oxidation behavior of an alumina scale-forming NiCrAlY alloy. Oxidation of Metals, 2010, 74(3−4): 179−191.
DOI: 10.1007/s11085-010-9206-6
Google Scholar
[13]
R.C. Hendricks, R.E. Chupp, S.B. Lattmie, Turbo machine interface sealing. NASA/TM−2005−213633, (2005).
Google Scholar
[14]
V. Postolenko, Failure mechanisms of thermal barrier coatings for high temperature gas turbine components under cyclic thermal loading. aus Kiew, Ukraine: Von der Fakultät für Georessourcen und Materialtechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen, (2008).
DOI: 10.1007/978-3-663-04545-8
Google Scholar
[15]
Q. Wu, R.B. Yang, Y.X. Wu, S.S. Li, Y Ma, S.K. Gong, A comparative study of four modified Al coatings on Ni3Al-based single crystal superalloy. Progress in Natural Science: Materials International, 2011, 21: 496-505.
DOI: 10.1016/s1002-0071(12)60089-6
Google Scholar
[16]
D. Clemens, V. Vosberg, W Hobbs, TEM and SNMS studies of protective alumina scales on NiCrAlY-alloys. Fresenius' Journal of Analytical Chemistry, 1996, 355(5): 703−706.
DOI: 10.1007/s0021663550703
Google Scholar
[17]
H.B. Guo, L.D. Sun, H.F. Li, S.K. Gong, High temperature oxidation behavior of hafnium modified NiAl bond coat in EB-PVD thermal barrier coating system. Thin Solid Films, 2008, 516: 5732–5735.
DOI: 10.1016/j.tsf.2007.07.031
Google Scholar
[18]
W.J. Brindley, R.A. Miller, Thermal barrier coating life and isothermal oxidation of low-pressure plasma-sprayed bond coat alloys. Surf. & Coat. Technol, 1990, v43 (1-3): 446-457.
DOI: 10.1016/b978-1-85166-813-7.50050-4
Google Scholar
[19]
J.K. Yoon, J.Y. Byun, G.H. Kim, Growth kinetics of three Mo-silicide layers formed by chemical vapor deposition of Si on Mo substrate. Surface and Coatings Technology, 2002, 155(1): 85−95.
DOI: 10.1016/s0257-8972(02)00015-4
Google Scholar