Preparation of Oxide Dispersion Strengthened Fe by Co-Precipitation

Article Preview

Abstract:

Oxide dispersion strengthened (ODS) materials have received extensive attention due to their excellent resistance to high temperature creep, fatigue, corrosion and radiation damage. In this paper, the ODS iron powder is prepared by co-precipitation. The oxide dispersion strengthened iron was prepared by spark plasma sintering (SPS) from the ODS iron powder. The microstructure and mechanical properties of the materials were investigated by Scanning Electron Microscope and micro-electronic universal tester. The results reveal the Al2O3 dispersion of ODS iron powder by co-precipitation is uniform and the mechanical properties are excellent.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 747-748)

Pages:

619-624

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.R.Z. Sandim, R.A. Renzetti, A.F. Padilha, D. Raabe, M. Klimenkov, R. Lindau, Annealing behavior of ferritic-martensitic 9%Cr-ODS-Eurofer steel, Mater. Sci. Eng. A. 527 (2010) 3602-3608.

DOI: 10.1016/j.msea.2010.02.051

Google Scholar

[2] N. Akasaka, S. Yamashita, T. Yoshitake, S. Ukai, A. Kimura, Microstructural changes of neutron irradiated ODS ferritic and martensitic steels, J. Nucl. Mater. 329-333 (2004) 1053-1056.

DOI: 10.1016/j.jnucmat.2004.04.133

Google Scholar

[3] G.J. Zhang, G. Liu, Y.J. Sun, F. Jiang, L. Wang, R. Wang, Microstructure and strengthening mechanisms of molybdenum alloy wires doped with lanthanum oxide particles, Int. J. Refract. Met. H. 27 (2009) 173-176.

DOI: 10.1016/j.ijrmhm.2008.06.007

Google Scholar

[4] J.H. Schneibel, C.T. Liu, D.T. Hoelzer, M.J. Mills, P. Sarosi, T. Hayashi, Development of porosity in an oxide dispersion-strengthened ferritic alloy containing nanoscale oxide particles, Scripta. Mater. 57 (2007) 1040-1043.

DOI: 10.1016/j.scriptamat.2007.07.029

Google Scholar

[5] J.H. Schneibel, S. Shim, Nano-scale oxide dispersoids by internal oxidation of Fe-Ti-Y intermetallics, Mater. Sci. Eng. A. 488 (2008) 134-138.

DOI: 10.1016/j.msea.2007.10.074

Google Scholar

[6] J.H. Ahn, H.J. Kim, I.H. Oh, Y.J. Kim, Preparation of nano-sized ODS alloys by ball-milling using metallic salts, J. Alloy. Compd. 483 (2009) 247-251.

DOI: 10.1016/j.jallcom.2008.08.138

Google Scholar

[7] T.S. Ward, C. Wenliang, M. Schoenitz, R.N. Dave, E.L. Dreizin, A study of mechanical alloying processes using reactive milling and discrete element modeling, Acta Mater. 53 (2005) 2909-2918.

DOI: 10.1016/j.actamat.2005.03.006

Google Scholar

[8] I. Baker, B. Iliescu, J. Li, H.J. Frost, Experiments and simulations of directionally annealed ODS MA 754, Mater. Sci. Eng. A. 492 (2008) 353-363.

DOI: 10.1016/j.msea.2008.03.032

Google Scholar

[9] J. Saito, T. Suda, S. Yamashita, S. Ohnuki, H. Takahashi, N. Akasaka, Void formation and microstructural development in oxide dispersion strengthened ferritic steels during electron-irradiation, J. Nucl. Mater. 258-263 (1998) 1264-1268.

DOI: 10.1016/s0022-3115(98)00140-8

Google Scholar

[10] Y.L. Chen, A.R. Jones, Reduction of porosity in oxide dispersion-strengthened alloys produced by powder metallurgy, Metall. Mater. Trans. A. 32 (2001) 2077-(2085).

DOI: 10.1007/s11661-001-0019-8

Google Scholar

[11] Y.L. Chen, A.R. Jones, U. Miller, Origin of porosity in oxide dispersion strengthened alloys produced by mechanical alloying, Metall. Mater. Trans. A. 33A (2002) 2713-2718.

DOI: 10.1007/s11661-002-0393-x

Google Scholar

[12] M. Turker, Formation of porosity in ferritic ODS alloys on high temperature exposure, J. Mater. Sci. 40 (2005) 1201-1208.

DOI: 10.1007/s10853-005-6938-9

Google Scholar