[1]
D.K. Mukhopadhyay, F.H. Froes, D.S. Gelles, Development of oxide dispersion strengthened ferritic steels for fusion, J. Nucl. Mater. 258-263 (1998) 1209-1215.
DOI: 10.1016/s0022-3115(98)00188-3
Google Scholar
[2]
G.R. Romanoski, L.L. Snead, R.L. Klueh, D.T. Hoelzer, Development of an oxide dispersion strengthened, reduced-activation steel for fusion energy, J. Nucl. Mater. 283-287 (2000) 642-646.
DOI: 10.1016/s0022-3115(00)00137-9
Google Scholar
[3]
R. Lindau, A. Mőslang, M. Schirra, P. Schlossmacher, M. Klimenkov, Mechnical and microstructural properties of a hipped RAFM ODS-steel, J. Nucl. Mater. 307-311 (2002) 769-772.
DOI: 10.1016/s0022-3115(02)01045-0
Google Scholar
[4]
S. Ukai, M. Harada, H. Okada, M. Inoue, S. Nomura, S. Shikakura, K. Asabe, T. Nishida, M. Fujiwara, Alloying design of oxide dispersion strengthened ferritic steel for long life FBRs core materials, J. Nucl. Mater. 204 (1993) 65-73.
DOI: 10.1016/0022-3115(93)90200-i
Google Scholar
[5]
V.V. Sagaradze, V.I. Shalaev, V.L. Arbuzov, B.N. Goshchitskii, T. Yun, Q. Wan, J.G. Sun, Radiation resistance and thermal creep of ODS ferritic steels, J. Nucl. Mater. 295 (2001) 265-272.
DOI: 10.1016/s0022-3115(01)00511-6
Google Scholar
[6]
L. Zhang, S. Ukai, T. Hoshino, S. Hayashi, X.H. Qu, Y2O3 evolution and dispersion refinement in Co-base ODS alloys, Acta Mater. 57 (2009) 3671-3682.
DOI: 10.1016/j.actamat.2009.04.033
Google Scholar
[7]
A. Ramar, P. Spätig, R. Schäublin, Analysis of high temperature deformation mechanism in ODS EUROFER97 alloy, J. Nucl. Mater. 382 (2008) 210-216.
DOI: 10.1016/j.jnucmat.2008.08.009
Google Scholar
[8]
J.H. Schneibel, S. Shim, Nano-scale oxide dispersoids by internal oxidation of Fe-Ti-Y intermetallics, Mater. Sci. Eng. A488 (2008) 134-138.
DOI: 10.1016/j.msea.2007.10.074
Google Scholar
[9]
J.H. Ahn, H.J. Kim, I.H. Oh, Y.J. Kim, Preparation of nano-sized ODS alloys by ball-milling using metallic salts, J. Alloys Compd. 483 (2009) 247-251.
DOI: 10.1016/j.jallcom.2008.08.138
Google Scholar
[10]
T.S. Ward, W.L. Chen, M. Schoenitz, R.N. Dave, E.L. Dreizin, A study of mechanical alloying processes using reactive milling and discrete element modeling, Acta Mater. 53 (2005) 2909-2918.
DOI: 10.1016/j.actamat.2005.03.006
Google Scholar
[11]
I. Baker, B. Iliescu, J. Li, H.J. Frost, Experiments and simulations of directionally annealed ODS MA 754, Mater. Sci. Eng. A492 (2008) 353-363.
DOI: 10.1016/j.msea.2008.03.032
Google Scholar
[12]
K.A. Singh, L.C. Pathak, S.K. Roy, Effect of citric acid on the synthesis of nano-crystalline yttria stabilized zirconia powders by nitrate-citrate process, Ceram. Int. 33 (2007) 1463-1468.
DOI: 10.1016/j.ceramint.2006.05.021
Google Scholar
[13]
D.G. Lamas, R.E. Juárez, G.E. Lascalea, N.E. Walsöe de Reca, Synthesis of compositionally homogeneous, nanocrystalline ZrO2-35 mol% CeO2 powders by gel-combusion, J. Mater. Sci. Lett. 20 (2001) 1447-1449.
DOI: 10.1016/s0167-577x(99)00131-7
Google Scholar
[14]
W. Zhou, Z.P. Shao, R. Ran, W.Q. Jin, N.P. Xu, Functional nano-composite oxides synthesized by environmental-friendly auto-combustion within a micro-bioreactor, Mater. Res. Bull. 43 (2008) 2248-2259.
DOI: 10.1016/j.materresbull.2007.08.011
Google Scholar
[15]
J.S. Hirschhorn, Introduction to Powder Metallurgy, American Powder Metallurgy Institute, Princeton, (1969).
Google Scholar