The Precipitation and Strengthening Mechanism of Cu-Ni-Si-Co Alloy

Article Preview

Abstract:

The precipitates, mechanical properties and strengthening effect of Cu-Ni-Si,Cu-Ni-Si-Co0.8 and Cu-Ni-Si-Co1.9 alloys are investigated. It is concluded from the TEM and XRD analysis that the strengthening of Cu-Ni-Si-Co alloy is mainly attributed to precipitates of both Ni2Si and Co2Si phases, with the same structures and very close lattice parameters. The addition of 1.9 wt% Co barely affects the precipitation process of Ni2Si or Co2Si, and may not be beneficial for enhancing the strength. The strengthening of Cu-Ni-Si-Co alloy is determined by the Orowan mechanism, and a critical precipitate radii rc about 1.5 nm corresponding to the peak strength is obtained through the theoretical analysis. It can be deduced that the peak strength of aged Cu-Ni-Si-Co alloy is obtained with the microstructures containing metastable phase and Ni2Si (or Co2Si) precipitates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

294-298

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Cao, J. Ma, X. Tang, B. Wang, S. Wang, H. Li, Design of Cu-Ni-Si copper alloy for lead frame [J], The Chinese Journal of Nonferrous Metals. 9 (1999) 723-727.

Google Scholar

[2] R. Futatsuka, Development of copper alloy for lead frame [J], Journal of the Japan Copper and Brass Research Association. 36 (1997) 25- 32.

Google Scholar

[3] R. Monzen, C. Watanabe, Microstructure and mechanical properties of Cu–Ni–Si alloys [J], Materials Science and Engineering A. 483-484 (2008) 117-119.

DOI: 10.1016/j.msea.2006.12.163

Google Scholar

[4] D. Zhao , Q. Dong , P. Liu , B. Kang, J. Huang , Z. Jin, Structure and strength of the age hardened Cu–Ni–Si alloy [J], Materials Chemistry and Physics. 79 (2003) 81-86.

DOI: 10.1016/s0254-0584(02)00451-0

Google Scholar

[5] D. Zhao , Q. Dong , P. Liu , B. Kang, J. Huang , Z. Jin, Aging transformation in Cu-3. 2Ni-0. 75Si alloy [J], Transactions of Nonferrous Metals Society of China. 2 (2003) 258-261.

Google Scholar

[6] Z. Sun, C. Laitem, A. Vincent, Dynamic embrittlement at intermediate temperature in a Cu–Ni–Si alloy [J], Materials Science and Engineering A. 477 (2008) 145-152.

DOI: 10.1016/j.msea.2007.05.013

Google Scholar

[7] Q. Lei, Z. Li, Z.Y. Pan, M.P. Wang, Z. Xiao, C. Chen, Dynamics of phase transformation of Cu-Ni-Si alloy with super-high strength and high conductivity during aging [J], Transactions of Nonferrous Metals Society of China. 20 (2010) 1006-1011.

DOI: 10.1016/s1003-6326(09)60249-1

Google Scholar

[8] A. Varschavsky, E. Donoso, DSC Study of Precipitation Processes in Cu-Co-Si Alloys [J], Journal of Thermal Analysis and Calorimetry. 74 (2003) 41-56.

Google Scholar

[9] J. Lly, L.S. Toth, T. Ungar, I. Kovacs, B. Albert, The Decomposition of the Solid Solution State in Cu-Co-Si Alloys [J], Electron Microscopy. 2 (1984) 13-18.

Google Scholar

[10] A. Varschavsky, E. Donoso, Energetic and kinetic evaluations in a quasi-binary Cu–1 at. % Co2Si alloy [J], Materials Letters. 57(7) ( 2003) 1266-1271.

DOI: 10.1016/s0167-577x(02)00970-9

Google Scholar

[11] A. Varschavsky, E. Donoso, A micro calorimetric study of fatigue crack propagation in precipitation-hardened Cu-Co-Si alloys [J], Materials Letters. 15 (1992) 207-211.

DOI: 10.1016/0167-577x(92)90146-b

Google Scholar

[12] J. Lendvai, T. Ungár, I Kovács, B. Albert, Precipitation processes in Cu-Co-Si alloys [J], Journal of Materials Science. 23 (1988) 4059-4065.

DOI: 10.1007/bf01106835

Google Scholar

[13] B. Albert, Solubility and Precipitation Processes in Cu-Co-Si Alloys, II- Analysis of the Precipitation Processes [J], Z Metallkd. 76 (1985) 528-531.

Google Scholar

[14] K. Kazuki, E. Masatoshi, Cu-Cr-si-based alloy foil, Japanese Patent JP2008081817, 9 (2006).

Google Scholar

[15] D. Zhao , Q. Dong , P. Liu , B. Kang, J. Huang , Z. Jin, Aging behavior of Cu–Ni–Si alloy, Materials Science and Engineering A. 361 (2003) 93-99.

DOI: 10.1016/s0921-5093(03)00496-9

Google Scholar

[16] SA. Lockyer, F.W. Noble, Precipitate structure in a Cu-Ni-Si alloy, Journal of Materials Science. 29 (1994) 218-226.

DOI: 10.1007/bf00356596

Google Scholar

[17] L.G. Petrova, O.V. Chudina, Comparison of dispersion hardening by coherent and incoherent nitrides in nitriding of alloys based on iron, nickel, and cobalt, Metal Science and Heat Treatment. 42 (2000) 183-188.

DOI: 10.1007/bf02469847

Google Scholar

[18] L. Proville, B. Bako, Dislocation depinning from ordered nanophases in a model fcc crystal: From cutting mechanism to Orowan looping, Acta Materialia. 58 (2010) 5565-5571.

DOI: 10.1016/j.actamat.2010.06.018

Google Scholar