[1]
Y. Cao, J. Ma, X. Tang, B. Wang, S. Wang, H. Li, Design of Cu-Ni-Si copper alloy for lead frame [J], The Chinese Journal of Nonferrous Metals. 9 (1999) 723-727.
Google Scholar
[2]
R. Futatsuka, Development of copper alloy for lead frame [J], Journal of the Japan Copper and Brass Research Association. 36 (1997) 25- 32.
Google Scholar
[3]
R. Monzen, C. Watanabe, Microstructure and mechanical properties of Cu–Ni–Si alloys [J], Materials Science and Engineering A. 483-484 (2008) 117-119.
DOI: 10.1016/j.msea.2006.12.163
Google Scholar
[4]
D. Zhao , Q. Dong , P. Liu , B. Kang, J. Huang , Z. Jin, Structure and strength of the age hardened Cu–Ni–Si alloy [J], Materials Chemistry and Physics. 79 (2003) 81-86.
DOI: 10.1016/s0254-0584(02)00451-0
Google Scholar
[5]
D. Zhao , Q. Dong , P. Liu , B. Kang, J. Huang , Z. Jin, Aging transformation in Cu-3. 2Ni-0. 75Si alloy [J], Transactions of Nonferrous Metals Society of China. 2 (2003) 258-261.
Google Scholar
[6]
Z. Sun, C. Laitem, A. Vincent, Dynamic embrittlement at intermediate temperature in a Cu–Ni–Si alloy [J], Materials Science and Engineering A. 477 (2008) 145-152.
DOI: 10.1016/j.msea.2007.05.013
Google Scholar
[7]
Q. Lei, Z. Li, Z.Y. Pan, M.P. Wang, Z. Xiao, C. Chen, Dynamics of phase transformation of Cu-Ni-Si alloy with super-high strength and high conductivity during aging [J], Transactions of Nonferrous Metals Society of China. 20 (2010) 1006-1011.
DOI: 10.1016/s1003-6326(09)60249-1
Google Scholar
[8]
A. Varschavsky, E. Donoso, DSC Study of Precipitation Processes in Cu-Co-Si Alloys [J], Journal of Thermal Analysis and Calorimetry. 74 (2003) 41-56.
Google Scholar
[9]
J. Lly, L.S. Toth, T. Ungar, I. Kovacs, B. Albert, The Decomposition of the Solid Solution State in Cu-Co-Si Alloys [J], Electron Microscopy. 2 (1984) 13-18.
Google Scholar
[10]
A. Varschavsky, E. Donoso, Energetic and kinetic evaluations in a quasi-binary Cu–1 at. % Co2Si alloy [J], Materials Letters. 57(7) ( 2003) 1266-1271.
DOI: 10.1016/s0167-577x(02)00970-9
Google Scholar
[11]
A. Varschavsky, E. Donoso, A micro calorimetric study of fatigue crack propagation in precipitation-hardened Cu-Co-Si alloys [J], Materials Letters. 15 (1992) 207-211.
DOI: 10.1016/0167-577x(92)90146-b
Google Scholar
[12]
J. Lendvai, T. Ungár, I Kovács, B. Albert, Precipitation processes in Cu-Co-Si alloys [J], Journal of Materials Science. 23 (1988) 4059-4065.
DOI: 10.1007/bf01106835
Google Scholar
[13]
B. Albert, Solubility and Precipitation Processes in Cu-Co-Si Alloys, II- Analysis of the Precipitation Processes [J], Z Metallkd. 76 (1985) 528-531.
Google Scholar
[14]
K. Kazuki, E. Masatoshi, Cu-Cr-si-based alloy foil, Japanese Patent JP2008081817, 9 (2006).
Google Scholar
[15]
D. Zhao , Q. Dong , P. Liu , B. Kang, J. Huang , Z. Jin, Aging behavior of Cu–Ni–Si alloy, Materials Science and Engineering A. 361 (2003) 93-99.
DOI: 10.1016/s0921-5093(03)00496-9
Google Scholar
[16]
SA. Lockyer, F.W. Noble, Precipitate structure in a Cu-Ni-Si alloy, Journal of Materials Science. 29 (1994) 218-226.
DOI: 10.1007/bf00356596
Google Scholar
[17]
L.G. Petrova, O.V. Chudina, Comparison of dispersion hardening by coherent and incoherent nitrides in nitriding of alloys based on iron, nickel, and cobalt, Metal Science and Heat Treatment. 42 (2000) 183-188.
DOI: 10.1007/bf02469847
Google Scholar
[18]
L. Proville, B. Bako, Dislocation depinning from ordered nanophases in a model fcc crystal: From cutting mechanism to Orowan looping, Acta Materialia. 58 (2010) 5565-5571.
DOI: 10.1016/j.actamat.2010.06.018
Google Scholar