Preparation and Characterization of the Highly Regular Nitrogen Doped Anatase TiO2 Nanotube

Article Preview

Abstract:

Nitrogen-doped TiO2 nanotubes (N-TNTs) were fabricated on the titanium foil by anodic oxidation and followed by annealing at NH3 environment. Highly ordered nanotubes, roughly 150 nm in the diameter and 20 μm in the length, were synthesized on the titanium foil. By controlling oxidation voltage, the thick TiO2 nanotubes were peeled off from the titanium substrate. In one step annealing at NH3 environment, nitrogen replaced oxygen and doped into TiO2, but anatase phase was formed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

654-659

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Daiwei Gong, Craig A, Oomman K. Varghese, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res., 16(2001)3331-3334.

DOI: 10.1557/jmr.2001.0457

Google Scholar

[2] G. K. Mor, Oomman K. Varghese, Craig A. Grimes, et al., Fabrication of tapered, conical-shaped titania nanotubes, J. Mater. Res., 18(2003)2588-2593.

DOI: 10.1557/jmr.2003.0362

Google Scholar

[3] Chuanmin Ruan, Maggie Paulose, Craig A. Grimes, et al., Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte, J. Phy. Chem. B, 109(2005)15754-15759.

DOI: 10.1021/jp052736u

Google Scholar

[4] Gopal K. Mor, Karthik Shankar, Craig A. Grimes, et al., Enhanced photocleavage of water using titania nanotube arrays, Nano Lett., 5(2005)191-195.

DOI: 10.1021/nl048301k

Google Scholar

[5] Jan M. Macak, Martin Zlamal, Patrik Schmuki, et al., self-organized TiO2 nanotube layers as highly efficient photocatalysts, Small, 3(2007)300-304.

DOI: 10.1002/smll.200600426

Google Scholar

[6] Oomman K. Varghese, Dawei Gong, Craig A. Grimes, et al., Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure, Adv. Mater., 15(2003)624-627.

DOI: 10.1002/adma.200304586

Google Scholar

[7] Gopal K. Mor, Karthik Shankar, Craig A. Grimes, et al., Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells, Nano Lett., 5(2006)215-218.

DOI: 10.1021/nl052099j

Google Scholar

[18] Keat G. Ong, Oomman K, Craig A. Grimes, et al., Application of fimite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption, Solar Enery Materials & Solar Cells, 91(2007).

DOI: 10.1016/j.solmat.2006.09.002

Google Scholar

[9] Lixue Deng, Shurong Wang, Shoumin Zhang, et al., Synthesis, characterization of Fe-depoed TiO2 nanobubes with high photocatalytic activity, Catal. Lett., 129(2009)513-518.

DOI: 10.1007/s10562-008-9834-5

Google Scholar

[10] Wongyong Choi, Andress Termin, Michael R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreativity and carrier recombination dynamics, J. Phys. Chem. 98(1994)13669-13679.

DOI: 10.1021/j100102a038

Google Scholar

[11] K. Wike, H.D. Breuer, The influence of transition metal doping on the physical and photocatalytic properties of titania, Journal of photochemistry and photobiology A: Chemistry, 121(1999)49-53.

DOI: 10.1016/s1010-6030(98)00452-3

Google Scholar

[12] Lecheng Lei, Yaling Su, Minghua Zhou, et al., Fabrication of multi-non-metal-doped TiO2 nanotubes by anodization in mixed acid electrolyte, Materials Research Bulletin, 42(2007)2230-2236.

DOI: 10.1016/j.materresbull.2007.01.001

Google Scholar

[13] Na Lu, Xie Quan, Guohua Chen, et al., Fabrication of Boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability, J. Phys. Chem. C, 111(2007)11836-11842.

DOI: 10.1021/jp071359d

Google Scholar

[14] Robert Hahn, Andrei Ghrei Ghicov, Patrik Schmuki, et al., Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment, Nanotechnology, 18(2007)105604-105608.

DOI: 10.1088/0957-4484/18/10/105604

Google Scholar

[15] Takeshi Morikawa, Ryoji Asahi, Takeshi Ohwaki, et al., Band-gap narrowing of Titanium dioxide by nitrogen doping, Jpn. J. Appl. Phys. 40(2001)L561-L563.

DOI: 10.1143/jjap.40.l561

Google Scholar

[16] R. Asahi, T. Morikawa, T. Ohwaki, et al., Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293(2001)269-271.

DOI: 10.1126/science.1061051

Google Scholar

[17] Karthik Shankar, Kong Chhay Tep, Craig A Grimes, et al., An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties, J. Phys. D: Appl. Phys., 39(2006).

DOI: 10.1088/0022-3727/39/11/008

Google Scholar

[18] R. P. Vitiello, J. M. Macak. P. Schmuki, et al., N-doping of anodic TiO2 nanotubes using heat treatment in ammonia, Electrochemistry Communications, 8(2006)544-548.

DOI: 10.1016/j.elecom.2006.01.023

Google Scholar

[19] J. M. Macak, A. Ghicov, R. Hahn, P. Schmuki, et al., Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thicknesses, J. Mater. Res., 21(2006)2824-2828.

DOI: 10.1557/jmr.2006.0344

Google Scholar

[20] Andrei Ghicov, Jan M. Macak, Patrik Schmuki, et al., TiO2 nanotube layers: Dose effets during nitrogen doping by ion implantation, Chemical Physicals Letters, 419(2006)426-429.

DOI: 10.1016/j.cplett.2005.11.102

Google Scholar

[21] Andrei Ghicov, Jan M. Macak, Patrik Schmuki, et al., Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes, Nano Lett., 6(2006)1080-1082.

DOI: 10.1021/nl0600979

Google Scholar

[22] Doohun Kim, Shinji Fujimoto, Hiroaki Tsuchiya, et al., Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys, Electrochemistry Communications, 10(2008)910-913.

DOI: 10.1016/j.elecom.2008.04.001

Google Scholar

[23] Dong Fang, Kelong Huang, Suqin Liu, et al., High-density NiTiO3/TiO2 nanotubes synthesized through sol-gel method using wll-ordered TiO2 membranes as template, Journal of alloys and Compunds, 498(2010)37-41.

DOI: 10.1016/j.jallcom.2010.02.150

Google Scholar

[24] Zhonghai Zhang, Md Faruk Hossain, Takakazu Takahashi, Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation, Internationa Journal of Hydrogen energy, 35(2010)8528-8535.

DOI: 10.1016/j.ijhydene.2010.03.032

Google Scholar

[25] Yeonmi Shin and Seonghoon Lee, Self-orgnized regular arrays of anodic TiO2 nanotubes, Nano Lett., 8(2008)3171-3173.

DOI: 10.1021/nl801422w

Google Scholar

[26] Daoai Wang, Feng Zhou, Weimin Liu, A novel protovol toward perfect alignment of anodized TiO2 nanotube, Adv. Mater., 212(2009)1964-(1967).

Google Scholar

[27] Chiatzun Goh, Kevin Coakley, Michael D. McGehee, Nanostructuring titania by embossing with polymer molds made from anodic alumina templates, Nano Lett., 5(2005)1545-1549.

DOI: 10.1021/nl050704c

Google Scholar

[28] Yuekun Lai, Changjian Lin, Jianying Huang, Markedly controllable adhesion of superhydrophobic Spongelike Nanostruture TiO2 Films, Langmuir, 24(2008)3867-3873.

DOI: 10.1021/la7031863

Google Scholar

[29] Amy L. Linsebigler, Guangquan Lu, John T. Yates, Photocatalysis on TiO2 surface: principles, mechanisms, and sekected results. Chem. Rev, 95(1995)735-758.

DOI: 10.1021/cr00035a013

Google Scholar

[30] Karthik Shankar, James I. Basham, Craig A. Grimes, et al., Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry, J. Phys. Chem. C, 113(2009)6327-6359.

DOI: 10.1021/jp809385x

Google Scholar

[31] Naresh C. Saha, Harland G. Tompkins, Titanium nitride oxidation chemistry: An X-ray photoeledtron spectroscopy study, J. Appl. Phys., 72(1992)3072-3079.

DOI: 10.1063/1.351465

Google Scholar