Improvement of Thermoelectric Properties of CuAlO2 by Excess Oxygen Doping in Annealing

Article Preview

Abstract:

The reaction behavior of CuAlO2 during the annealing at high temperatures was investigated. The relationship between thermoelectric properties including electrical resistivity, excess oxygen doping and decomposition of CuAlO2 was discussed. The evolution of CuAlO2 compact during the annealing mainly included excess oxygen doping, decomposition of CuAlO2 into CuAl2O4 and CuO and complete decomposition of CuAlO2 as following pattern : CuAlO2 → CuAlO2+x → CuAlO2+CuO+ CuAl2O4 → CuAl2O4+CuO. Electrical resistivity of the compacts was decreased with excess oxygen doping, but increased when CuO and CuAl2O4 were formed. Thermoelectric performance of the compacts was improved due to the excess oxygen doping.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-137

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Scherrer, S. Scherrer, et al., in : Thermoelectrics Handbook, edited by D.M. Rowe, Section III Thermoelectric Materials, Taylor & Francis Group (2006).

Google Scholar

[2] I. Terasaki, Y. Sasago and K. Uchinokura: Phys. Rev. B, R12685(1997).

Google Scholar

[3] R. Funahashi, I. Matsubara, H. Ikuta and T. Takeuchi: JPN. J. Appl. Phys., 39 (2000), L1127.

Google Scholar

[4] Y. Lu, K. Sagara, L. Hao, Z. W. Ji and H. Yoshida: Mater. Trans., 53-7 (2012), 1208.

Google Scholar

[5] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, et al.: Nature, 389-6654 (1997), 939.

Google Scholar

[6] M.S. Lee, T.Y. Kim and D. Kim: Appl. Phys. Lett., 79-13 (2001), (2028).

Google Scholar

[7] T. Koyanagi, H. Harima, et al.: J. Phys. Chem. Solid. 64 (2003), 1443.

Google Scholar

[8] K. Park, K. Y. Ko, and W.S. Seo: J. Euro. Ceam. Soci., 25 (2005), 2219.

Google Scholar

[9] K. Koumoto, H. Koduka and W. S. Seo: J. Mater. Chem., 11-2 (2001), 251.

Google Scholar

[10] A.N. Banerjee, R. Maity and K.K. Chattopadhyay: Mater. Lett., 58-1/2 (2004), 10.

Google Scholar

[11] Y. Lu, K. Maeda, Y. R. Jin and M. Hirihashi: Mater. Sci. Tech. JPN., 48 (2011), 302.

Google Scholar

[12] A.N. Banerjee, C.K. Ghosh and Chattopadhyay: Solar Energy Mater. & Solar Cells, 89(2005), 75.

Google Scholar

[13] L.C. Leu, D.P. Norton, G.E. Jellison Jr., et al.: Thin. Solid Films, 515 (2007), 6938.

Google Scholar

[14] Y.K. Jeong and G.M. Choi: J. Phys. Chem. Solids. 57 (1996), 81.

Google Scholar