[1]
D. A. Shnawah, M. F. M. Sabri, I. A. Badruddin, A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products, Microe. Reliab. 52 (2012) 90-99.
DOI: 10.1016/j.microrel.2011.07.093
Google Scholar
[2]
Soldertec European lead-free technology roadmap, ver 1; 2002. p.1–26.
Google Scholar
[3]
Ma H, Suhling JC, A review of mechanical properties of lead-free solders for electronic packaging, J. of Mat. Sci. 2009; 44: 1141–58.
DOI: 10.1007/s10853-008-3125-9
Google Scholar
[4]
C.M. Miller, I.E. Anderson, and J.F. Smith, A viable tin–lead solder substitute – Sn–Ag–Cu, J. Electron. Mater., 23 (1984), p.595–601.
DOI: 10.1007/bf02653344
Google Scholar
[5]
M.E. Loomans and M.E. Fine, Tin–silver–copper eutectic temperature and composition, Metall. Mater. Trans. A, 31A (2000), p.1155–1162.
DOI: 10.1007/s11661-000-0111-5
Google Scholar
[6]
Nimmo K, Lead-Free Soldering in Electronics, Alloy selection. New York: Marcel Dekker; (2004).
Google Scholar
[7]
B.L. Chen, G.Y. Li, Influence of Sb on IMC growth in Sn–Ag–Cu–Sb Pb-free solder joints in reflow process, Thin Sol. Films 462–463 (2004) 395– 401.
DOI: 10.1016/j.tsf.2004.05.063
Google Scholar
[8]
R.E. Pratt, E.I. Stromswold, D.J. Quesnel, Mode I fracture toughness testing of eutectic Sn-Pb solder joints, J. of El. Mat. 23 (1994) 375.
DOI: 10.1007/bf02671217
Google Scholar
[9]
C. Liu, C. Lai, M. Wang, M. Hon, Thermal behavior and microstructure of the intermetallic compounds formed at the Sn–3Ag–0. 5Cu/Cu interface after soldering and isothermal aging, J. of Cry. Grow. 290 (2006) 103–110.
DOI: 10.1016/j.jcrysgro.2005.12.090
Google Scholar
[10]
LI Guo-yuan', SHI Xun-qing, Effects of bismuth on growth of intermetallic compounds in Sn-Ag-Cu Pb-free solder joints, Trans. Nonf. Met. SOC. China 16(2006) 739-743.
DOI: 10.1016/s1003-6326(06)60292-6
Google Scholar
[11]
D.G. Kim, J.W. Kim, S.B. Jung, Evaluation of solder joint reliability in flip chip package under thermal shock test, Thin Sol. Films 504 (2006) 426 – 430.
DOI: 10.1016/j.tsf.2005.09.097
Google Scholar
[12]
J.W. Kim, S.B. Jung, Mater. Sci. Eng., Characterization of the shear test method with low melting point In–48Sn solder joints, A Struct. Mater.: Prop. Microstruct. Process. 397 (2005) 185.
DOI: 10.1016/j.msea.2005.02.040
Google Scholar
[13]
J. Glazer, Metallurgy of low temperature Pb-free solders for electronic assembly, Int. Mater. Rev. 40 (1995) 67.
Google Scholar
[14]
L. R. Garcia, W. R. Osório, A. Garcia, The effect of cooling rate on the dendritic spacing and morphology of Ag3Sn intermetallic particles of a SnAg solder alloy, Mat. and Des. 32 (2011) 3008–3012.
DOI: 10.1016/j.matdes.2010.12.046
Google Scholar
[15]
D.Q. Yu, L. Wang, The growth and roughness evolution of intermetallic compounds of Sn–Ag–Cu/Cu interface during soldering reaction, J. of Al. and Com. 458 (2008) 542–547.
DOI: 10.1016/j.jallcom.2007.04.047
Google Scholar
[16]
Q.K. Zhang, Z.F. Zhang, Fracture mechanism and strength-influencing factors of Cu/Sn–4Ag solder joints aged for different times, J. of Al. and Com. 485 (2009) 853–861.
DOI: 10.1016/j.jallcom.2009.06.108
Google Scholar
[17]
H.T. Chen, C.Q. Wang, M.Y. Li, Numerical and experimental analysis of the Sn3. 5Ag0. 75Cu solder joint reliability under thermal cycling, Microe. Rel. 46 (2006) 1348–1356.
DOI: 10.1016/j.microrel.2005.12.001
Google Scholar