Modelling Time-Dependent Nucleation of Recrystallization in Aluminium Alloys

Article Preview

Abstract:

The basic equations and mathematical framework of a mean-field model for recovery and recrystallization, the latter based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) approach, capable of handling time-dependent nucleation of recrystallization, is presented. Different approaches to account for time-dependent nucleation are discussed. A physically-based nucleation model where “nucleation” of recrystallization is brought about by “abnormal” subgrain growth seems most appealing, in terms of realism and mathematical convenience. Its implementation and effects on the recrystallization behavior are demonstrated through an example of back-annealing after cold deformation of a generic aluminium alloy case

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-152

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. E. Vatne, T. Furu, R. Ørsund, and E. Nes, Modelling recrystallization after hot deformation of aluminium. Acta materialia 44 (1996) 4463-4473.

DOI: 10.1016/1359-6454(96)00078-x

Google Scholar

[2] J.A. Sæter, B. Forbord, H.E. Vatne, and E. Nes, Modelling recovery and recrystallization, applied to back-annealing of aluminium sheet alloys. Proceedings 6th International Conference on Aluminum Alloys, ICAA-6 eds. T. Sato et al., JILM, Japan, 1998, pp.113-126.

Google Scholar

[3] O. Engler, L. Löchte, J. Hirsch, Through-process simulation of texture and properties during the thermomechanical processing of aluminium sheets, Acta Materialia 55 (2007) 5449–5463.

DOI: 10.1016/j.actamat.2007.06.010

Google Scholar

[4] K. Marthinsen, J. Friis, B. Holmedal, I. Skauvik, and T. Furu, Modelling the recrystallization behaviour during industrial processing of aluminium alloys. Materials Science Forum Vols. 715-716 (2012) 543-548.

DOI: 10.4028/www.scientific.net/msf.715-716.543

Google Scholar

[5] J. W. Dunlop, Y. J. M. Brechet, L. Legras, and H. S. Zurob, Modelling isothermal and non-isothermal recrystallisation kinetics: Application to zircaloy-4. Journal of Nuclear Materials 366 (2007) 178-186.

DOI: 10.1016/j.jnucmat.2006.12.074

Google Scholar

[6] W. Schneider, A. Koeppl, and J. Berger, Non-isothermal crystallization of polymers. System of rate equations, Int. Polym. Proc. 2 (1998) 151-154.

Google Scholar

[7] H. S. Zurob, Y. Brechet, and J. Dunlop, Quantitative criterion for recrystallization nucleation in single-phase alloys: Prediction of critical strains and incubation times. Acta Materialia 54 (2006) 3983-3990.

DOI: 10.1016/j.actamat.2006.04.028

Google Scholar

[8] J.W. Christian, The Theory of Transformation in Metals and Alloys, Pergamon, Oxford, 2002.

Google Scholar

[9] F. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, 1995.

Google Scholar

[10] E.A. Holm, M.A. Miodownik, A.D. Rollett, On abnormal subgrain growth and the origin of Acta Materialia 51 (2003) 2701–2716.

DOI: 10.1016/s1359-6454(03)00079-x

Google Scholar

[11] S. Bunkholt, K. Marthinsen, E. Nes, Recovery Kinetics in High Purity and Commercial Purity Aluminium Alloys, ibid.

DOI: 10.4028/www.scientific.net/msf.753.235

Google Scholar

[12] F. Humphreys, Nucleation in recrystallization, in: B. Bacroix, J. Driver, R. Le Gall, C. Maurice, R. Penelle, H. Réglé (Eds.), Recrystallization and Grain Growth, vol. 1, Trans Tech., Annecy, 2004, p.629.

Google Scholar