[1]
D.A. Hughes, N. Hansen, Plastic deformation structures, in: ASM handbook, Vol. 9, Metallography and microstructures, ASM International, Philadelphia, PA, 2004, pp.192-206.
DOI: 10.31399/asm.hb.v09.a0003742
Google Scholar
[2]
N. Hansen, D. Juul Jensen, Deformed metals – structure, recrystallisation and strength, Mater. Sci. Tech. 27 (2011) 1229-1240.
DOI: 10.1179/1743284711y.0000000046
Google Scholar
[3]
D.A. Hughes, N. Hansen, High angle boundaries formed by grain subdivision mechanisms, Acta Mater. 45 (1997) 3871-3886.
DOI: 10.1016/s1359-6454(97)00027-x
Google Scholar
[4]
X. Huang, G. Winther, Dislocation structures. Part I. Grain orientation dependence, Phil. Mag. 87 (2007) 5189-5214.
DOI: 10.1080/14786430701652851
Google Scholar
[5]
Q. Liu, X. Huang, D.J. Lloyd, N. Hansen, Microstructure and strength of commercial purity aluminium (AA 1200) cold-rolled to large strains, Acta Mater. 50 (2002) 3789-3802.
DOI: 10.1016/s1359-6454(02)00174-x
Google Scholar
[6]
D.A. Hughes, The development of high angle deformation boundaries and local orientations in aluminum, in: J.G. Morris, S.K. Das, H.S. Goodrich (Eds.), Aluminum alloys for packaging II, The Minerals, Metals and Materials Society, Warrendale, PA, USA, 1996, p.129.
Google Scholar
[7]
N. Hansen, The role of deformation microstructure in recovery and recrystallization of heavily strained metals, Mater. Sci. Forum 715-716 (2012) 251-258.
DOI: 10.4028/www.scientific.net/msf.715-716.251
Google Scholar
[8]
O. V. Mishin, E. M. Lauridsen, N. C. Krieger Lassen, G. Brückner, T. Tschentscher, B. Bay, D. Juul Jensen, H. F. Poulsen, Application of high-energy synchrotron radiation for texture studies, J. Appl. Crystallogr. 33 (2000) 364-371.
DOI: 10.1107/s0021889899016684
Google Scholar
[9]
O.V. Mishin, B. Bay, G. Winther, D. Juul Jensen, The effect of roll gap geometry on microstructure in cold-rolled aluminum, Acta Mater. 52 (2004) 5761-5770.
DOI: 10.1016/j.actamat.2004.08.028
Google Scholar
[10]
Y. Huang, G.H. Zahid, P.B. Prangnell, Loss of high angle boundary area during annealing a cryo-SPD processed Al-alloy with a nano-scale lamellar grain structure, Mater. Sci. Forum 715-716 (2012) 219-226.
DOI: 10.4028/www.scientific.net/msf.715-716.219
Google Scholar
[11]
N. Kamikawa, N. Tsuji, X. Huang, N. Hansen, Quantification of annealed microstructures in ARB processed aluminum, Acta Mater. 54 (2006) 3055-3066.
DOI: 10.1016/j.actamat.2006.02.046
Google Scholar
[12]
T. Yu, N. Hansen, X. Huang, Recovery by triple junction motion in aluminium deformed to ultrahigh strains, Proc. R. Soc. A 467 (2011) 3039-3065.
DOI: 10.1098/rspa.2011.0097
Google Scholar
[13]
T. Yu, N. Hansen, X. Huang, Triple junction motion – a new recovery mechanism in metals deformed to large strains, Mater. Sci. Forum (2013) in these proceedings.
DOI: 10.4028/www.scientific.net/msf.753.485
Google Scholar
[14]
X. Huang, X. Xing, D. Juul Jensen, N. Hansen, Large strain deformation and annealing of aluminium, Mater. Sci. Forum 519–521 (2006) 79-84.
DOI: 10.4028/www.scientific.net/msf.519-521.79
Google Scholar
[15]
R.A. Vandermeer, N. Hansen, Recovery kinetics of nanostructured aluminum: model and experiment, Acta Mater. 56 (2008) 5719-5727.
DOI: 10.1016/j.actamat.2008.07.038
Google Scholar
[16]
Q. Xing, X. Huang, N. Hansen, Recovery of heavily cold-rolled aluminum: effect of local texture, Metall. Mater. Trans. A 37 (2006) 1311-1322.
DOI: 10.1007/s11661-006-1083-x
Google Scholar
[17]
O.V. Mishin, D. Juul Jensen, A. Godfrey, N. Hansen, in preparation.
Google Scholar
[18]
O.V. Mishin, D. Juul Jensen, N. Hansen, Evolution of microstructure and texture during annealing of aluminum AA1050 cold rolled to high and ultrahigh strains, Metall. Mater. Trans. A 41 (2010) 2936-2948.
DOI: 10.1007/s11661-010-0291-6
Google Scholar