Coupling of Local Texture and Microstructure Evolution during Restoration Processes in Aluminum Deformed to Large Strains

Article Preview

Abstract:

The coupling between local texture and microstructure is analyzed during restoration processes in aluminum cold-rolled to high and ultrahigh strains. The deformed microstructure is composed of lamellae with orientations of rolling texture components that occupy different volume fractions and vary in the spatial distribution. The individual lamellae are separated by low and high angle boundaries and significant local differences are produced in the deformed microstructure both in terms of the stored energy and boundary mobility. These differences influence recovery and recrystallization processes, resulting in significant local variations in mechanisms and kinetics of these processes. The observations suggest that the characterization of the local texture and microstructure both in the deformed state and after annealing is important in order to underpin the analysis of recovery and recrystallization on the sample scale.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

251-256

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.A. Hughes, N. Hansen, Plastic deformation structures, in: ASM handbook, Vol. 9, Metallography and microstructures, ASM International, Philadelphia, PA, 2004, pp.192-206.

DOI: 10.31399/asm.hb.v09.a0003742

Google Scholar

[2] N. Hansen, D. Juul Jensen, Deformed metals – structure, recrystallisation and strength, Mater. Sci. Tech. 27 (2011) 1229-1240.

DOI: 10.1179/1743284711y.0000000046

Google Scholar

[3] D.A. Hughes, N. Hansen, High angle boundaries formed by grain subdivision mechanisms, Acta Mater. 45 (1997) 3871-3886.

DOI: 10.1016/s1359-6454(97)00027-x

Google Scholar

[4] X. Huang, G. Winther, Dislocation structures. Part I. Grain orientation dependence, Phil. Mag. 87 (2007) 5189-5214.

DOI: 10.1080/14786430701652851

Google Scholar

[5] Q. Liu, X. Huang, D.J. Lloyd, N. Hansen, Microstructure and strength of commercial purity aluminium (AA 1200) cold-rolled to large strains, Acta Mater. 50 (2002) 3789-3802.

DOI: 10.1016/s1359-6454(02)00174-x

Google Scholar

[6] D.A. Hughes, The development of high angle deformation boundaries and local orientations in aluminum, in: J.G. Morris, S.K. Das, H.S. Goodrich (Eds.), Aluminum alloys for packaging II, The Minerals, Metals and Materials Society, Warrendale, PA, USA, 1996, p.129.

Google Scholar

[7] N. Hansen, The role of deformation microstructure in recovery and recrystallization of heavily strained metals, Mater. Sci. Forum 715-716 (2012) 251-258.

DOI: 10.4028/www.scientific.net/msf.715-716.251

Google Scholar

[8] O. V. Mishin, E. M. Lauridsen, N. C. Krieger Lassen, G. Brückner, T. Tschentscher, B. Bay, D. Juul Jensen, H. F. Poulsen, Application of high-energy synchrotron radiation for texture studies, J. Appl. Crystallogr. 33 (2000) 364-371.

DOI: 10.1107/s0021889899016684

Google Scholar

[9] O.V. Mishin, B. Bay, G. Winther, D. Juul Jensen, The effect of roll gap geometry on microstructure in cold-rolled aluminum, Acta Mater. 52 (2004) 5761-5770.

DOI: 10.1016/j.actamat.2004.08.028

Google Scholar

[10] Y. Huang, G.H. Zahid, P.B. Prangnell, Loss of high angle boundary area during annealing a cryo-SPD processed Al-alloy with a nano-scale lamellar grain structure, Mater. Sci. Forum 715-716 (2012) 219-226.

DOI: 10.4028/www.scientific.net/msf.715-716.219

Google Scholar

[11] N. Kamikawa, N. Tsuji, X. Huang, N. Hansen, Quantification of annealed microstructures in ARB processed aluminum, Acta Mater. 54 (2006) 3055-3066.

DOI: 10.1016/j.actamat.2006.02.046

Google Scholar

[12] T. Yu, N. Hansen, X. Huang, Recovery by triple junction motion in aluminium deformed to ultrahigh strains, Proc. R. Soc. A 467 (2011) 3039-3065.

DOI: 10.1098/rspa.2011.0097

Google Scholar

[13] T. Yu, N. Hansen, X. Huang, Triple junction motion – a new recovery mechanism in metals deformed to large strains, Mater. Sci. Forum (2013) in these proceedings.

DOI: 10.4028/www.scientific.net/msf.753.485

Google Scholar

[14] X. Huang, X. Xing, D. Juul Jensen, N. Hansen, Large strain deformation and annealing of aluminium, Mater. Sci. Forum 519–521 (2006) 79-84.

DOI: 10.4028/www.scientific.net/msf.519-521.79

Google Scholar

[15] R.A. Vandermeer, N. Hansen, Recovery kinetics of nanostructured aluminum: model and experiment, Acta Mater. 56 (2008) 5719-5727.

DOI: 10.1016/j.actamat.2008.07.038

Google Scholar

[16] Q. Xing, X. Huang, N. Hansen, Recovery of heavily cold-rolled aluminum: effect of local texture, Metall. Mater. Trans. A 37 (2006) 1311-1322.

DOI: 10.1007/s11661-006-1083-x

Google Scholar

[17] O.V. Mishin, D. Juul Jensen, A. Godfrey, N. Hansen, in preparation.

Google Scholar

[18] O.V. Mishin, D. Juul Jensen, N. Hansen, Evolution of microstructure and texture during annealing of aluminum AA1050 cold rolled to high and ultrahigh strains, Metall. Mater. Trans. A 41 (2010) 2936-2948.

DOI: 10.1007/s11661-010-0291-6

Google Scholar