Novel Approach to Model Static Recrystallization of Austenite during Hot-Rolling of Nb-Microalloyed Steel: Effect of Precipitates

Article Preview

Abstract:

Microalloying additions are critical for grain size control during thermo-mechanical processing. The addition of niobium is known to delay the onset and growth of recrystallization. A physically-based model for the interaction of strain-induced precipitation, recovery and recrystallization is presented. A key feature of the model is the incorporation of the effect of precipitation on the nucleation of recrystallization. Quantitative agreement between the experimental measurements and the model predictions has also been demonstrated. The model offers valuable insight into the relative contributions of solute and precipitate Nb as well as the optimum conditions for strain accumulation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

417-422

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. R. Irving, Iron age, 226(5) (1983) 41-47.

Google Scholar

[2] H. J. Kestenbach, S.S. Campos and E.V. Morales, Mater. Sci. Tech., 22 (2006) 615-626.

Google Scholar

[3] P. D. Hodgson, Metals forum, 17 (1993) 403-408.

Google Scholar

[4] M. Militzer, E. Hawbolt and T. Meadowcroft, Metall. Mater. Trans. A, 31 (2000) 1247-1259.

Google Scholar

[5] B. Dutta and C.M. Sellars. Mater. Sci. Tech., 3 (1987) 197-206.

Google Scholar

[6] T. Gladman, The physical metallurgy of microalloyed steels, Institute of Materials, London, 1997.

Google Scholar

[7] K. Rehman and H. S. Zurob, submitted to: Metall. Mater. Trans. A.

Google Scholar

[8] B. Dutta, E.J. Palmiere and C.M. Sellars, Acta Mater., 49 (2001) 785-794.

Google Scholar

[9] H. S. Zurob et al., Acta Mater., 50 (2002) 3075-3092.

Google Scholar

[10] M. Verdier, Y. Brechet and P. Guyot, Acta Mater., 47 (1998) 127-134.

Google Scholar

[11] J. W. C. Dunlop et al., J. Nuc. Mater. 336 (2007) 178-186.

Google Scholar

[12] F. J. Humphreys, Acta Mater., 45 (1997) 4231-4240.

Google Scholar

[13] J. E. Bailey and P.B. Hirsch., Proc. Roy. Soc. London. Series A, 267 (1962) 11-30.

Google Scholar

[14] H. Andrade, M. Akben and J. Jonas, Metall. Mater. Trans. A, 14 (1983) 1967-1977.

Google Scholar

[15] D. Bai et al., Metall. Mater. Trans. A, 24 (1993) 2151-2159.

Google Scholar

[16] R. D. Doherty et al., Mater. Sci. Eng. A, 238 (1997) 219-274.

Google Scholar

[17] F. J. Humphreys and M.G. Ardakani, Acta Mater., 44 (1996) 2717-2727.

Google Scholar

[18] P. M. Hazzledine and R.D.J. Oldershaw, Phil. Mag. A, 61 (1990) 579-589.

Google Scholar

[19] H. S. Zurob, Y. Brechet and J. Dunlop, Acta Mater. 54 (2006) 3983-3990.

Google Scholar

[20] R. Sandsttröm, Acta Metall. Mater. 25 (1977) 905-911.

Google Scholar

[21] C. J. Tweed, B. Ralph and N. Hansen, Acta Metall. Mater., 32 (1984) 1407-1414.

Google Scholar

[22] Rios, P.R. Acta Metall Mater, 1987. 35(12): pp.2805-14.

Google Scholar

[23] S. K. Chang, Mater. Sci. Tech., 8 (1992) 760-766.

Google Scholar

[24] K. B. Kang et al., Scr. Mater., 36 (1997) 1303-1308.

Google Scholar

[25] C. S. Smith, Trans. metall. Soc. A.I.M.E., 175 (1948) 15-97.

Google Scholar

[26] J. W. Cahn, Acta Metall. Mater., 10 (1962) 789-798.

Google Scholar

[27] H. Kirchner, Metall. Mater. Trans. B, 2 (1971) 2861-2864.

Google Scholar