[1]
V. Randle, Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials, Acta Mater. 47 (1999) 4187-4196.
DOI: 10.1016/s1359-6454(99)00277-3
Google Scholar
[2]
X.Y. Fang, K. Zhang, H. Guo, W.G. Wang and B.X. Zhou, Twin-induced grain boundary engineering in 304 stainless steel, Mater. Sci. Eng. A487 (2008) 7-13.
Google Scholar
[3]
W.G. Wang, B.X. Zhou, G.S. Rohrer, H. Guo and Z.X. Cai, Textures and grain boundary character distributions in a cold rolled and annealed Pb–Ca based alloy, Mater. Sci. Eng. A527 (2010) 3695-3706.
DOI: 10.1016/j.msea.2010.03.081
Google Scholar
[4]
D.G. Brandon, The structure of high-angle grain boundaries, Acta Metall.14 (1964) 1479-1484.
Google Scholar
[5]
G.S. Rohrer, D.M. Saylor, B.S.E. Dasher and B.L. Adams, The distribution of internal interfaces in polycrystals, Z. Metall. 95 (2004) 197-214.
DOI: 10.3139/146.017934
Google Scholar
[6]
W.G. Wang, B.X. Zhou and H. Guo, Relations of initial microstructure with grain boundary character distributions in a cold rolled and annealed lead alloy, Mater. Sci. Forum 638-642 (2010) 2864-2869.
DOI: 10.4028/www.scientific.net/msf.638-642.2864
Google Scholar
[7]
F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomenon, 2nd edition, Elsevier Ltd.,Oxford, 2004, Chapter 7.
Google Scholar
[8]
X.Y. Fang, W.G. Wang, Z.X. Cai, C.X. Qin and B.X. Zhou, The evolution of cluster of grains with ∑3n relationship in austenitic stainless steel, Mater. Sci. Eng. A 527 (2010) 1571-1576.
DOI: 10.1016/j.msea.2009.10.034
Google Scholar
[9]
V.Y. Gertsman and C.H. Henager, JR, Grain boundary junctions in microstructure generated by multiple twinning, Interface Science 11 (2003) 403-415.
DOI: 10.1023/a:1026191810431
Google Scholar
[10]
B.X. Zhou and Q.X. Liu, Recrystallization of Al and Cu single crystals after tensile deformation, Acta Metall. Sinica 17 (1981) 363-373.
Google Scholar