Materials Science Forum
Vol. 759
Vol. 759
Materials Science Forum
Vol. 758
Vol. 758
Materials Science Forum
Vol. 757
Vol. 757
Materials Science Forum
Vol. 756
Vol. 756
Materials Science Forum
Vol. 755
Vol. 755
Materials Science Forum
Vol. 754
Vol. 754
Materials Science Forum
Vol. 753
Vol. 753
Materials Science Forum
Vol. 752
Vol. 752
Materials Science Forum
Vol. 751
Vol. 751
Materials Science Forum
Vol. 750
Vol. 750
Materials Science Forum
Vol. 749
Vol. 749
Materials Science Forum
Vols. 747-748
Vols. 747-748
Materials Science Forum
Vols. 745-746
Vols. 745-746
Materials Science Forum Vol. 753
Paper Title Page
Abstract: Experiments were conducted to determine microstructure changes occurring during thermal exposure in metals processed by equal-channel angular pressing (ECAP). The ECAP pressing was performed at room temperature by route Bc. Static annealing and constant load creep tests in tension were conducted at 0.3-0.5 Tm. The microstructure was examined by scanning electron microscope combined with focus ion beam - TESCAN LYRA 3 equipped with electron back scatter diffraction (EBSD). It was found that creep behaviour is influenced by synergetic effect of additional creep mechanisms like grain boundary sliding, more intensive diffusion processes or recrystallization.
46
Abstract: Single pass and double-pass friction stir processing was carried out on commercially pure aluminium at a rotation speed of 640 rpm and traverse speed of 150 mm/min and a detailed electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) analysis was carried out to understand the microstructure developed. The grain size was refined substantially after the first pass whereas there was no significant change in the grain size after the second pass. This indicates that the final grain size after friction stir processing does not depend on the starting grain size. The equiaxed fine grains were formed by dynamic recrystallization process as revealed by EBSD analysis. TEM observations showed banded contrast across the grain boundaries indicating grain boundaries to be in equilibrium. Free dislocations observed inside grains after the first pass were well arranged into subgrain boundaries after the second pass. EBSD also revealed some variation in microstructural features such as grain size, texture index, grain orientation spread and grain average misorientation across the surface and also in the cross section of the stir zone both after single and double pass.
50
Abstract: The present work examines the microstructure and texture evolution in a Ni-30wt.%Fe austenitic model alloy deformed in torsion at 1000 °C, with a particular emphasis on the orientation dependence of the substructure characteristics within the deformed original grains. Texture of these grains was principally consistent with that expected for simple shear and comprised the main A, B and C components. The deformation substructure within the main texture component grains was characterised by “organised” arrays of parallel microbands with systematically alternating misorientations, locally accompanied by micro-shear bands within the C grains. With increasing strain, the mean subgrain size gradually decreased and the mean misorientation angle concurrently increased towards the saturation. The stored deformation energy within the main texture component grains was principally consistent with the respective Taylor factor values. The microband boundaries corresponded to the expected single slip {111} plane for the A oriented grains while these boundaries for the C oriented grains represented a variety of planes even for a single grain.
54
Abstract: Heterogeneous deformation during rolling is a crucial issue for elucidating recrystallization behavior. The progress thus far in our understanding of heterogeneity has been reviewed focusing on grain boundary and shear band. A statistical study on heterogeneous deformation structure using EBSD revealed that heterogeneity along the grain boundary can be classified into three types: 1) relatively flat boundary, 2) irregularly serrated boundary, and 3) boundary associated with fine grains. The fine grains in type 3 seem to be dynamically recovered as a cold-rolled state. Shear band formation is considered to be caused by plastic instability that is accelerated, for instance, by dynamic strain aging. A shear band is revealed to have a feature of recovered fine cells with Goss orientation already embedded in the shear band. The application of the phase-field method is exploited to predict recrystallization behavior and texture evolution during annealing based on the subgrain growth model. In simulation, a bulging mechanism seems to be dominant. Thus, a more rigorous description of the heterogeneous deformation structure is needed in the future
58
Abstract: The microstructure evolution and softening processes occurring in 22Cr-19Ni-3Mo austenitic and 21Cr-10Ni-3Mo duplex stainless steels deformed in torsion at 900 and 1200 °C were studied in the present work. Austenite was observed to soften in both steels via dynamic recovery (DRV) and dynamic recrystallisation (DRX) for the low and high deformation temperatures, respectively. At 900 °C, an “organised”, self-screening austenite deformation substructure largely comprising microbands, locally accompanied by micro-shear bands, was formed. By contrast, a “random”, accommodating austenite deformation substructure composed of equiaxed subgrains formed at 1200 °C. In the single-phase steel, DRX of austenite largely occurred through strain-induced grain boundary migration accompanied by (multiple) twinning. In the duplex steel, this softening mechanism was complemented by the formation of DRX grains through subgrain growth in the austenite/ferrite interface regions and by large-scale subgrain coalescence. At 900 °C, the duplex steel displayed limited stress-assisted phase transformations between austenite and ferrite, characterised by the dissolution of the primary austenite, formation of Widmanstätten secondary austenite and gradual globularisation of the transformed regions with strain. The softening process within ferrite was classified as “extended DRV”, characterised by a continuous increase in misorientations across the sub-boundaries with strain, for both deformation temperatures.
66
Abstract: Adiabatic shear bands (ASBs) develop generally during high strain rates. This paper investigates the transformation induced plasticity (TRIP) effect during ASBs formation at high strain rates in high manganese TRIP steels containing initial austenite and ferrite by EBSD technique. Results show that TRIP effect takes place mainly before the formation of ASBs. After ASBs formation, TRIP effect is strongly restricted by the size effect, the increase of stacking fault energy (SFE) and even inverse martensitic transformation due to the rise of temperature. The TRIP effect before ASBs formation contributes to the resistance of adiabatic shear failure. Dynamic recrystallization driven by subgrains rotation occurs within ASBs, and ultrafine grains often show strong shear textures with twin relationship owing to slip mechanism.
72
Abstract: Two distinct substructures were produced in a Ni-30Fe austenitic model alloy by different thermomechanical processing routes. The first substructure largely displayed organized, banded subgrain arrangements with alternating misorientations, resulting from the deformation at a strain just before the initiation of dynamic recrystallization (DRX). By contrast, the second substructure was more random in character and exhibited complex subgrain/cell arrangements characterized by local accumulation of misorientations, formed through DRX. During the post-deformation annealing, the latter substructure revealed a rapid disintegration of dislocation boundaries leading to the formation of dislocation-free grains within a short holding time, though the former largely preserved its characteristics till becoming replaced by growing statically recrystallized grains.
76
Abstract: Though there developed same concentrations of special grain boundaries (SBs) in grain boundary engineered (GBE) austenitic stainless steel (304 stainless steel) and a Pb-Ca based alloy, the makeup of SBs, size distribution of clusters of grains with ∑3n (n=1,2,3) orientation relationships (∑3n CG), and grain orientations (textures) are quite different between the two specimens, suggesting there have two different mechanisms separately governing the evolution of grain boundary character distributions (GBCDs) in the two types of materials during GBE processing.
83
Abstract: The thermal groove technique has been used to measure relative grain boundary energies in two 100 ppm Ca-doped yttria samples. The first has a normal grain size distribution and the boundaries have a bilayer of segregated Ca. In the second sample, there is a combination of large grains and small grains. The boundaries around the large grains are known to have an intergranular film. The results show that the relative energies of boundaries in the sample with normal grain growth and the boundaries around small grains far from larger grains in the second sample are similar. Also, boundaries surrounding the largest grains and small grains immediately adjacent to them have the same and significantly lower energies. The results indicate that grain boundaries with an intergranular film have a lower energy than those with bilayer segregation and that the intergranular film extends beyond the periphery of the largest grains, but not throughout the entire sample.
87
Abstract: EBSD (Electron Backscatter Diffraction) is a modern experimental technique which allows to represent the information about texture and microstructure in the form of a topological map comprised of a very large number of acquisitioned orientation points. Such a map can be easily used to analyze grain boundaries. In TSL OIM Data Analysis software it is mainly done by Line Segments Method, in which grain boundaries are represented as lines separating pairs of EBSD points for which the misorientation value is within a specified range. The aim of this work is to present a complementary method of grain boundary characterization. In this case, a GB consists of specially selected EBSD points and is thus represented as a two dimensional area. As a result, new possibilities of GB analysis emerge, such as texture of GB areas. The provided description may be also more compatible with a real microstructure, especially after deformation, in which grain boundaries (especially the one with small misorientation) are indeed areas of lattice defects accumulation.
93