Materials Science Forum
Vol. 759
Vol. 759
Materials Science Forum
Vol. 758
Vol. 758
Materials Science Forum
Vol. 757
Vol. 757
Materials Science Forum
Vol. 756
Vol. 756
Materials Science Forum
Vol. 755
Vol. 755
Materials Science Forum
Vol. 754
Vol. 754
Materials Science Forum
Vol. 753
Vol. 753
Materials Science Forum
Vol. 752
Vol. 752
Materials Science Forum
Vol. 751
Vol. 751
Materials Science Forum
Vol. 750
Vol. 750
Materials Science Forum
Vol. 749
Vol. 749
Materials Science Forum
Vols. 747-748
Vols. 747-748
Materials Science Forum
Vols. 745-746
Vols. 745-746
Materials Science Forum Vol. 753
Paper Title Page
Abstract: This paper reviews our recent investigations on grain growth in ceramics. Grain growth behavior has been found to be governed by the grain boundary structure: normal growth with a stationary relative grain size distribution for rough boundaries and non-normal (nonstationary) growth for faceted boundaries. Based on the concept of nonlinear migration of faceted boundaries, the mixed control model of grain growth is introduced and the principle of microstructural evolution is deduced. This principle states that various types of grain growth behavior are predicted as a result of the coupling effect between the maximum driving force for growth and the critical driving force for appreciable migration of the boundary. A wealth of experimental results supports the theoretical predictions of grain growth behavior, showing the generality of the suggested principle of microstructural evolution. Application of this principle is also demonstrated for the fabrication of single crystals as well as polycrystals with desired microstructures.
377
Abstract: Based on a 3-D Von Neumann equation a general theoretical formulation has been provided in the framework of the statistical theory of grain growth to predict the microstructure evolution. By the same approach the topological relationships between number of grain faces, grain size, number of corners and edges and how these can be calculated in a real microstructure with a statistical approach are discussed. A quadratic law for the linkage between number of faces and grain size is found and together with the functional dependency of other relevant 3-D microstructure parameters good agreement with available experimental results is found .
383
Abstract: The effect of solute niobium in retarding coarsening kinetics of austenite in upstream thermo mechanical processing of high niobium (0.1wt%Nb) low interstitial steel is analyzed. Solute drag effect of niobium in retarding boundary mobility in static recrystallization is examined in thermo-mechanical rolling of high Nb microalloyed steel. The importance of austenite grain refinement prior to pancaking in compact strip rolling of high Nb microallyed steel as a means to increase surface area to volume ratio of pancaked austenite grain is emphasized. This is to promote adequate nucleation sites for phase transformation even under conditions low total rolling reduction below temperature of no recrystallization.
391
Abstract: Hot rolling of beams is carried out essentially in two stages. Roughing is performed in a reversing mill at temperatures in the range of 1100 oC, at relatively low strain rates and with long interpass times. Finishing is carried out in a reversing two stand mill at temperatures in between 1000 and as low as 700 oC considering parts of the web in the last passes. Strain rates are moderate and interpass times are in the range of 5 to 20s. There is, therefore, as it can be seen from the description just made of the rolling schedule, a fair resemblance to deformation in plate mills. Technology for themomechanical processing, TMP, of plates is very well known and disseminated. Application of this technology to beam rolling is, on the other hand, rather seldom known of. This paper addresses an application of TMP plate technology to beam rolling. In particular, austenite grain size evolution is examined. The usage of Nb microalloyed steels to this process is discussed in terms of possible beneficial effects to ferrite grain refinement.
397
Abstract: During the hot working of austenitic stainless steels the shape of the flow curve is strongly influenced by the strain rate. Low strain rate deformation results in flow curves typical of dynamic recrystallization (DRX) but as the strain rate increases the shape changes to a ‘flat-top’ curve. This has traditionally been thought to indicate no DRX is taking place and that dynamic recovery (DRV) is the only operating softening mechanism. Examining the work-hardening behaviour and corresponding deformation microstructures showed this is not the case for austenitic stainless steel, as clear evidence of dynamic recrystallization process can be seen. The post-deformation recrystallization kinetics can be modelled using a standard Avrami equation with an Avrami exponent, n, of 1.15. With an increasing value of the Zener-Hollomon parameter it was found that the kinetics of recrystallization become less strain rate sensitive until at the highest values (highest strain rates/lowest temperatures) the recrystallization kinetics become strain rate insensitive.
403
Abstract: A wire rod block at Fagersta Stainless AB, Sweden, consists of eight pairs of rolls with consecutive round-oval-round grooves. Test bars of an austenitic stainless steel of type AISI 304L that had been preheated to 930±70°C were manually fed into the wire block. By entering a guide after one of the roll pair, the bar was led out from the block into a water-filled tube for rapid quenching. The guide was moved successively from the first to the last pair of rolls and test bars were collected after each roll pair. In order to characterize the original structure one bar was preheated and directly water quenched without rolling. The aim of this study was to characterize the microstructure evolution during the wire rod rolling using electron backscatter diffraction. The size evolution for all grains, the recrystallized grains and for the subgrains in the deformed grains has been estimated and the fraction of recrystallized grains has been determined. During the first 3 passes almost no recrystallization is observed and strain accumulates. Partial recrystallization then occurs and for the last 3 passes the recrystallization is almost complete and the texture is nearly random.
407
Abstract: The structural changes that are related to the new fine grain development in a chromium-nickel austenitic stainless steel subjected to warm working by means of multiple forging and multiple rolling were studied. The multiple warm working to a total strain of 2 at temperatures of 500-900C resulted in the development of submicrocrystalline structures with mean grain sizes of 300-850 nm, depending on processing conditions. The new fine grains resulted mainly from a kind of continuous reactions, which can be referred to as continuous dynamic recrystallization. Namely, the new grains resulted from a progressive evolution of strain-induced grain boundaries, the number and misorientation of which gradually increased during deformation. In contrast to hot working accompanied by discontinuous dynamic recrystallization, when the dynamic grain size can be expressed by a power law function of temperature compensated strain rate as D ~ Z-0.4, much weaker temperature/strain rate dependence of D ~ Z-0.1 was obtained for the warm working.
411
Abstract: Microalloying additions are critical for grain size control during thermo-mechanical processing. The addition of niobium is known to delay the onset and growth of recrystallization. A physically-based model for the interaction of strain-induced precipitation, recovery and recrystallization is presented. A key feature of the model is the incorporation of the effect of precipitation on the nucleation of recrystallization. Quantitative agreement between the experimental measurements and the model predictions has also been demonstrated. The model offers valuable insight into the relative contributions of solute and precipitate Nb as well as the optimum conditions for strain accumulation.
417
Abstract: A number of physically based models are combined in order to predict microstructure development during hot deformation. The models treat average values for the generation and recovery of vacancies and dislocations, recrystallization and grain growth and the dissolution and precipitation of second phase particles. The models are applied to a number of laboratory experiments made on 304 austenitic stainless steel and the model parameters are adjusted from those used for low alloyed steel mainly in order to obtain the right kinetics for the influence of solute drag on climb of dislocations and on grain growth. The thermodynamic data are obtained using Thermo-Calc© to create solubility products for the possible secondary phases. One case of wire rolling has been analyzed mainly concerning the evolution of recrystallization and grain size. The time, temperature and strain history has been derived using process information. The models are shown to give a fair description of the microstructure development during hot working of the studied austenitic stainless steel.
423
Abstract: Theory for describing the conditions leading to dynamic recrystallization in FCC metals is introduced. The approach also describes stress-strain curves when this process occurs, and is unique in incorporating the effects of strain rate and temperature employing only physical parameters as input. The novelty of the approach stems from incorporating an incubation period in the equations describing the progress of dislocation density with strain; beyond such incubation dislocation free grains form. The energy barrier to ignite grain growth is expressed as a function of the strain energy stored in the material and a statistical entropy contribution due to the degrees of freedom available to a dislocation for annihilation. The incubation strain is obtained by performing an energy balance between the stored energy on the subgrain boundaries, the slip energy for boundary migration and the interfacial energy required for grain nucleation. The application of this work to Fe and Ni multicomponent alloys has lead to transition maps in temperature-strain rate space indicating the conditions for dynamic recrystallization occurrence.
427