Boundary Structure-Dependent Grain Growth Behavior in Polycrystals: Model and Principle

Article Preview

Abstract:

This paper reviews our recent investigations on grain growth in ceramics. Grain growth behavior has been found to be governed by the grain boundary structure: normal growth with a stationary relative grain size distribution for rough boundaries and non-normal (nonstationary) growth for faceted boundaries. Based on the concept of nonlinear migration of faceted boundaries, the mixed control model of grain growth is introduced and the principle of microstructural evolution is deduced. This principle states that various types of grain growth behavior are predicted as a result of the coupling effect between the maximum driving force for growth and the critical driving force for appreciable migration of the boundary. A wealth of experimental results supports the theoretical predictions of grain growth behavior, showing the generality of the suggested principle of microstructural evolution. Application of this principle is also demonstrated for the fabrication of single crystals as well as polycrystals with desired microstructures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

377-382

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.W. Cahn, Acta Metall., 10 (1962) 789-798.

Google Scholar

[2] K. Lücke, H.P. Stüwe, Acta Metall., 19 (1971) 1087-1099.

Google Scholar

[3] C. Zener, Private communication to C. S. Smith, Am. Inst. Min. Metall. Engrs., 175 (1949) 15.

Google Scholar

[4] P.A. Manohar, M. Ferry, T. Chandra, ISIJ International 38 (1998) 913-924.

Google Scholar

[5] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, Elsevier, Oxford, (1996) pp.114-120.

Google Scholar

[6] D.Y. Yoon, C.W. Park, J.B. Koo, Ceramic Interfaces 2., Institute of Materials, London , U.K., (2001) pp.3-21.

Google Scholar

[7] J.P. Hirth, G.M. Pound, Condensation and evaporation. Nucleation and growth kinetics, Macmillan, N.Y., (1963) pp.77-148.

Google Scholar

[8] J.M. Howe, Interfaces in Materials: Atomic Structure, Thermodynamics and Kinetics of Solid-Vapor, Solid-Liquid and Solid-Solid Interfaces, John Wiley & Sons, N. Y., 1997, pp.256-268.

Google Scholar

[9] S.-J.L. Kang, M. G. Lee and S. M. An, J. Am. Ceram. Soc., 92 (2009) 1464-1471.

Google Scholar

[10] K.L. Merkle, L.J. Thompson, Mater. Lett., 48 (2001) 188-193.

Google Scholar

[11] H. Gleiter, Acta Metall., 17 (1969) 565-573.

Google Scholar

[12] S.E. Babcock, R.W. Balluffi, Acta Metall., 37 (1989) 2367-2376.

Google Scholar

[13] S.M. An, B.K. Yoon, S.Y. Chung and S.-J.L. Kang, Acta Mater., 60 (2012) 4531-4539.

Google Scholar

[14] M. Hillert, Acta Metall., 13 (1965) 227-238.

Google Scholar

[15] Y.I. Jung, S.Y. Choi and S.-J.L. Kang, J. Am. Ceram. Soc., 86 (2003) 2228-2230.

Google Scholar

[16] Y.I. Jung, S.Y. Choi and S.-J.L. Kang, Acta Mater., 54 (2006) 2849-2855.

Google Scholar

[17] (a) Y.I. Jung, D.Y. Yoon and S.-J.L. Kang, J. Mater. Res., 24 (2009) 2949-2959. (b) S.-J.L. Kang, Y.I. Jung and K.S. Moon, Mater. Sci. Forum., 558-559 (2007) 827-834

Google Scholar

[18] B.K. Lee, S.Y. Chung and S.-J.L. Kang, Acta Mater., 48 (2000) 1575-1580.

Google Scholar

[19] S.B. Lee, D.Y. Yoon and M.F. Henry, Acta Mater., 48 (2000) 3071-3081.

Google Scholar

[20] J.B. Koo, D.Y. Yoon, Metall. and Mater. Trans. A, 32 (2001) 469-475.

Google Scholar

[21] C.W. Park, D.Y. Yoon, J. Am. Ceram. Soc., 83 (2000) 2605-2609.

Google Scholar

[22] J.B. Koo, D.Y. Yoon, Metall. and Mater. Trans. A, 32 (2001) 1911-1926.

Google Scholar

[23] W. Jo, D.Y. Kim and N.M. Hwang, J. Am. Ceram. Soc., 89 (2006) 2369-2380.

Google Scholar

[24] S.M. An, S.-J.L. Kang, Acta Mater., 59 (2011) 1964-1973.

Google Scholar

[25] M. Imaeda, T. Mizoguchi, Y. Sato, H.S. Lee, S.D. Findlay, N. Shibata and T. Yamamoto, Y. Ikuhara, Phys. Rev. B, 78 (2008) 245320.

Google Scholar

[26] H.S. Lee, T. Mizoguchi, T. Yamamoto, S.-J.L. Kang and Y. Ikuhara, Phys. Rev. B, 84 (2011) 195319.

Google Scholar

[27] B.K. Lee, S.-J.L. Kang, Acta Mater., 49 (2001) 1373-1381.

Google Scholar

[28] Information on www.ceracomp.com

Google Scholar

[29] B.K. Yoon, B.A. Lee and S.-J.L. Kang, Acta Mater., 53 (2005) 4677-4685.

Google Scholar

[30] K.S. Moon, S.-J.L. Kang, J. Am. Ceram. Soc., 91 (2008) 3191-3196.

Google Scholar