Thiolated Gd(III) Chelate Coated Gold Nanoparticles: Synthesis, Characterization, X-Ray CT and MRI Relaxivity Studies

Article Preview

Abstract:

Gadolinium complex of 2-aminothiophenol conjugated DTPA (DTPA=diethylenetriamine N,N,N',N",N" pentacetic acid) bis (amide) has been synthesized and characterized by various analytical techniques such as elemental analysis (EA), NMR, FAB-MS, IR, UV etc. This thiolated GdL (where L is a conjugate of DTPA and 2-aminothiophenol) has been anchored on the gold nanoparticles surfaces through thiols functionalites. These gold nanoparticles (AuNPs) have been synthesized by the reduction of gold tetrachloride (HAuCl4) using sodium citrate as reducing agent. The surface functionalization has been performed by the replacement of citrate coat on the gold nanoparticle surface with thiolated Gd-chelate, Au@GdL. The Au@GdL has been analyzed by XRD, transmission electron microscope (HRTEM), UV, ICP-MS etc. The average size of nanoparticles is about 22 nm with a uniform spherical shape. A very high number of GdL has been loaded on nanoparticle surface reaching up to 7.9x103 of Gd (III)- chelates per nanoparticle and they demonstrate very high r1 relaxivity and the r1 relaxivity per [G is much higher than the Gd (III)-chelate alone. The bimodality has also been tested using in-vitro x-ray computed tomography (x-ray CT). These nanoparticles (GNPs) are very stable and homogeneously dispersed in aqueous solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-130

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Caravan, J. J. Ellison, T.J. McMurry, R.B. Lauffer, Gadolinium(III) Chelates as MRI Contrast Agents:  Structure, Dynamics, and Applications Chem. Rev. 99 (1999) 2293-2352.

DOI: 10.1021/cr980440x

Google Scholar

[2] K.N. Raymond, V.C. Pierre, Next generation, high relaxivity gadolinium MRI agents, Bioconjugate Chem. 16 (2005) 3-8.

DOI: 10.1021/bc049817y

Google Scholar

[3] É. Tóth, A.E. Merbach, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, Wiley: Chichester, 2001.

Google Scholar

[4] P. Caravan, Strategies for increasing the sensitivity of gadolinium based MRI contrast agents Chem. Soc. Rev. 35 (2006) 512-523.

DOI: 10.1039/b510982p

Google Scholar

[5] E.J. Sanders, M.A. Wride, Programmed Cell Death in Development International Reviews in Cytology 163 (1995) 105-173.

DOI: 10.1016/s0074-7696(08)62210-x

Google Scholar

[6] B. Sitharaman, K.R. Kissell, K.B. Hartman, L.A. Tran, A. Baikalov, I. Rusakova, Y. Sun, H.A. Khant, S.J. Ludtke, W. Chiu, S. Laus, Ë. Tóth, L. Helm, E. Merbach, L.J. Wilson, Superparamagnetic gadonanotubes are high-performance MRI contrast agents Chem. Commun. (2005) 3915-3917.

DOI: 10.1039/b504435a

Google Scholar

[7] F. Bloch, W.W. Hansen, M. Packard, The nuclear induction experiment Phys. Rev. 70 (1946) 474-476.

DOI: 10.1103/physrev.70.474

Google Scholar

[8] S. M. Rocklage, A.D. Watson, M.J. Carvlin, Magnetic Resonance Imaging, W.G., Eds.; Mosby: St. Louis, 1992; Vol. 1.

Google Scholar

[9] R. Weissleder, M. Papisov, Pharmaceutical iron oxides for MR Imaging Rev. Magn. Reson. Med. 4 (1992) 1-20.

Google Scholar

[10] H. Gupta, R. Weissleder, Targeted contrast agents in MR imaging MRI Clinics of North America 4 (1996) 171-177.

DOI: 10.1016/s1064-9689(21)00560-2

Google Scholar

[11] L. Banci, I. Bertini, C. Luchinat, Nuclear and Electron Relaxation; VCH: Weinheim, 1991.

Google Scholar

[12] R.C. Brasch, New directions in the development of MR imaging contrast media. Radiology 183 (1992) 1-11.

DOI: 10.1148/radiology.183.1.1549653

Google Scholar

[13] S.W. A Bligh, A.H.M.S. Chowdhury, M. McPartlin, I. J. Scowen, R. A. Bulman, Neutral gadolinium(III) complexes of bulky octadentate dtpa derivatives as potential contrast agents for magnetic resonance imaging, Polyhedron 14 (1995) 567-569.

DOI: 10.1016/0277-5387(94)00318-9

Google Scholar

[14] D. Parker, K. Pulukkody, F.C. Smith, A. Batsanov, J.A.K. Howard, Structures of the yttrium complexes of 1,4,7,10-tetraazacyclododecane-N,N',N",N'''-tetraacetic acid (H4dota) and N,N"-bis(benzylcarbamoylmethyl)diethylenetriamine-N,N',N"-triacetic acid and the solution structure of a zirconium complex of H4dota J. Chem. Soc., Dalton Trans. (1994), 689-693.

DOI: 10.1039/dt9940000689

Google Scholar

[15] S. Aime, F. Benetollo, G. Bombieri, S. Colla, M. Fasano, V. Paoletti, Non-ionic Ln(III) chelates as MRI contrast agents: Synthesis, characterisation and 1H NMR relaxometric investigations of bis(benzylamide)diethylenetriaminepentaacetic acid Lu(III) and Gd(III) complexes, Inorg. Chim. Acta 254 (1997) 63-70.

DOI: 10.1016/s0020-1693(96)05139-0

Google Scholar

[16] K. Aslan, Z. Jian, J.R. Lakowicz, C.D. Geddes, Saccharide Sensing Using Gold and Silver Nanoparticles-A Review Journal of Fluorescence, 14 (2004) 391-400.

DOI: 10.1023/b:jofl.0000031820.17358.28

Google Scholar

[17] C. Riviere, F.P. Boudghene, F. Gazeau, J. Roger, J.N. Pons, Iron Oxide Nanoparticle–labeled Rat Smooth Muscle Cells: Cardiac MR Imaging for Cell Graft Monitoring and Quantitation, Radiology. 235 (2005) 959-967.

DOI: 10.1148/radiol.2353032057

Google Scholar

[18] C. Alexiou, W. Arnold, P. Hulin, R.J. Klein, H. Renz, F.G. Parak, C. Bergemann, A.S. Lubbe, Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting. J Magn Magn Mater. 225 (2001) 187-193.

DOI: 10.1016/s0304-8853(00)01256-7

Google Scholar

[19] P-J. Debouttiere, S. Roux, F. Vocanson, C. Billotey, O. Beuf, Y. Favre-Reguillon, S. Lin, R. Pellet-Rostaing, P. Lamartine, O. Perriat, Tillemen, Design of Gold Nanoparticles for Magnetic Resonance Imaging. Adv. Funct. Mater. 16 (2006) 2330-2339.

DOI: 10.1002/adfm.200600242

Google Scholar

[20] C. Alric, J. Taleb, G.L. Duc, C. Mandon, C. Bilotey, A.L. Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, O. Tilement, Gadolinium Chelate Coated Gold Nanoparticles As Contrast Agents for Both X-ray Computed Tomography and Magnetic Resonance Imaging J. Am. Chem. Soc. 130 (2008) 5908-5915.

DOI: 10.1021/ja078176p

Google Scholar

[21] P. Hermann, J. Kotek, V. Kubicek, I. Lukes, Gadolinium(III) complexes as MRI contrast agents: ligand design and properties of the complexes. Dalton Trans. (2008) 3027-3047.

DOI: 10.1039/b719704g

Google Scholar

[22] O. Rabin, J.M. Perez, J. Grimm, G. Wojtkiewicz, R. Weissleder, An x-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 5 (2006) 118-122.

DOI: 10.1038/nmat1571

Google Scholar

[23] S. Liu, D.S. Edwards, Fundamentals of receptor-based diagnostic metalloradiopharma- ceuticals Top. Curr. Chem. 222 (2002) 259-278.

Google Scholar