[1]
P. Caravan, J. J. Ellison, T.J. McMurry, R.B. Lauffer, Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications Chem. Rev. 99 (1999) 2293-2352.
DOI: 10.1021/cr980440x
Google Scholar
[2]
K.N. Raymond, V.C. Pierre, Next generation, high relaxivity gadolinium MRI agents, Bioconjugate Chem. 16 (2005) 3-8.
DOI: 10.1021/bc049817y
Google Scholar
[3]
É. Tóth, A.E. Merbach, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, Wiley: Chichester, 2001.
Google Scholar
[4]
P. Caravan, Strategies for increasing the sensitivity of gadolinium based MRI contrast agents Chem. Soc. Rev. 35 (2006) 512-523.
DOI: 10.1039/b510982p
Google Scholar
[5]
E.J. Sanders, M.A. Wride, Programmed Cell Death in Development International Reviews in Cytology 163 (1995) 105-173.
DOI: 10.1016/s0074-7696(08)62210-x
Google Scholar
[6]
B. Sitharaman, K.R. Kissell, K.B. Hartman, L.A. Tran, A. Baikalov, I. Rusakova, Y. Sun, H.A. Khant, S.J. Ludtke, W. Chiu, S. Laus, Ë. Tóth, L. Helm, E. Merbach, L.J. Wilson, Superparamagnetic gadonanotubes are high-performance MRI contrast agents Chem. Commun. (2005) 3915-3917.
DOI: 10.1039/b504435a
Google Scholar
[7]
F. Bloch, W.W. Hansen, M. Packard, The nuclear induction experiment Phys. Rev. 70 (1946) 474-476.
DOI: 10.1103/physrev.70.474
Google Scholar
[8]
S. M. Rocklage, A.D. Watson, M.J. Carvlin, Magnetic Resonance Imaging, W.G., Eds.; Mosby: St. Louis, 1992; Vol. 1.
Google Scholar
[9]
R. Weissleder, M. Papisov, Pharmaceutical iron oxides for MR Imaging Rev. Magn. Reson. Med. 4 (1992) 1-20.
Google Scholar
[10]
H. Gupta, R. Weissleder, Targeted contrast agents in MR imaging MRI Clinics of North America 4 (1996) 171-177.
DOI: 10.1016/s1064-9689(21)00560-2
Google Scholar
[11]
L. Banci, I. Bertini, C. Luchinat, Nuclear and Electron Relaxation; VCH: Weinheim, 1991.
Google Scholar
[12]
R.C. Brasch, New directions in the development of MR imaging contrast media. Radiology 183 (1992) 1-11.
DOI: 10.1148/radiology.183.1.1549653
Google Scholar
[13]
S.W. A Bligh, A.H.M.S. Chowdhury, M. McPartlin, I. J. Scowen, R. A. Bulman, Neutral gadolinium(III) complexes of bulky octadentate dtpa derivatives as potential contrast agents for magnetic resonance imaging, Polyhedron 14 (1995) 567-569.
DOI: 10.1016/0277-5387(94)00318-9
Google Scholar
[14]
D. Parker, K. Pulukkody, F.C. Smith, A. Batsanov, J.A.K. Howard, Structures of the yttrium complexes of 1,4,7,10-tetraazacyclododecane-N,N',N",N'''-tetraacetic acid (H4dota) and N,N"-bis(benzylcarbamoylmethyl)diethylenetriamine-N,N',N"-triacetic acid and the solution structure of a zirconium complex of H4dota J. Chem. Soc., Dalton Trans. (1994), 689-693.
DOI: 10.1039/dt9940000689
Google Scholar
[15]
S. Aime, F. Benetollo, G. Bombieri, S. Colla, M. Fasano, V. Paoletti, Non-ionic Ln(III) chelates as MRI contrast agents: Synthesis, characterisation and 1H NMR relaxometric investigations of bis(benzylamide)diethylenetriaminepentaacetic acid Lu(III) and Gd(III) complexes, Inorg. Chim. Acta 254 (1997) 63-70.
DOI: 10.1016/s0020-1693(96)05139-0
Google Scholar
[16]
K. Aslan, Z. Jian, J.R. Lakowicz, C.D. Geddes, Saccharide Sensing Using Gold and Silver Nanoparticles-A Review Journal of Fluorescence, 14 (2004) 391-400.
DOI: 10.1023/b:jofl.0000031820.17358.28
Google Scholar
[17]
C. Riviere, F.P. Boudghene, F. Gazeau, J. Roger, J.N. Pons, Iron Oxide Nanoparticle–labeled Rat Smooth Muscle Cells: Cardiac MR Imaging for Cell Graft Monitoring and Quantitation, Radiology. 235 (2005) 959-967.
DOI: 10.1148/radiol.2353032057
Google Scholar
[18]
C. Alexiou, W. Arnold, P. Hulin, R.J. Klein, H. Renz, F.G. Parak, C. Bergemann, A.S. Lubbe, Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting. J Magn Magn Mater. 225 (2001) 187-193.
DOI: 10.1016/s0304-8853(00)01256-7
Google Scholar
[19]
P-J. Debouttiere, S. Roux, F. Vocanson, C. Billotey, O. Beuf, Y. Favre-Reguillon, S. Lin, R. Pellet-Rostaing, P. Lamartine, O. Perriat, Tillemen, Design of Gold Nanoparticles for Magnetic Resonance Imaging. Adv. Funct. Mater. 16 (2006) 2330-2339.
DOI: 10.1002/adfm.200600242
Google Scholar
[20]
C. Alric, J. Taleb, G.L. Duc, C. Mandon, C. Bilotey, A.L. Meur-Herland, T. Brochard, F. Vocanson, M. Janier, P. Perriat, S. Roux, O. Tilement, Gadolinium Chelate Coated Gold Nanoparticles As Contrast Agents for Both X-ray Computed Tomography and Magnetic Resonance Imaging J. Am. Chem. Soc. 130 (2008) 5908-5915.
DOI: 10.1021/ja078176p
Google Scholar
[21]
P. Hermann, J. Kotek, V. Kubicek, I. Lukes, Gadolinium(III) complexes as MRI contrast agents: ligand design and properties of the complexes. Dalton Trans. (2008) 3027-3047.
DOI: 10.1039/b719704g
Google Scholar
[22]
O. Rabin, J.M. Perez, J. Grimm, G. Wojtkiewicz, R. Weissleder, An x-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 5 (2006) 118-122.
DOI: 10.1038/nmat1571
Google Scholar
[23]
S. Liu, D.S. Edwards, Fundamentals of receptor-based diagnostic metalloradiopharma- ceuticals Top. Curr. Chem. 222 (2002) 259-278.
Google Scholar