Surface-Enhanced Raman Scattering: A Technique of Choice for Molecular Detection

Article Preview

Abstract:

Although surface-enhanced Raman scattering (SERS) has crossed its infancy long ago, it is yet to persuade different challenges to make it available in day-to-day applications. SERS is being criticized mainly due to the quality of the SERS analyses that uses substrates to get the giant enhancement for respective Raman signal of the target molecule. Hence, understanding the phenomena behind substrates, cost-effective development and optimization of such substrates for routine analytical purposes and utilization of modern modalities to get the insights out has become a very wide-spreading and interesting area of research. In this piece of work, several key terminologies related to SERS have been presented in brief. Since SERS is a localized surface plasmon resonance (LSPR) mediated signal-enhancing phenomena, it is indispensable to understand the correlation between LSPR excitations originated from substrate and SERS signal originated from molecules. A wide range of SERS-active substrates including scattered nanoaggregates, anisotropic assembly, two-dimensional nanostructure, multi-layered nanostructure of gold nanoparticles and colloidal approach have been used to interpret such correlation between LSPR excitations and SERS characteristics. Few exemplary applications of SERS have been also mentioned followed by typical simulative work how nanoobject behaves at different excitations and polarizations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

143-169

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. Chalmers, R.R. Griffiths, Handbook of Vibrational Spectroscopy, John Wiley & Sons, Chichester, 2002.

Google Scholar

[2] J.W.M. Bulte, M.M.J. Modo, Nanoparticles in Biomedical Imaging: Emerging Technologies and Applications, Springer Science + Business Media, New York 2008.

Google Scholar

[3] C. Eliasson, A. Loren, J. Engelbrektsson, M. Josefson, J. Abrahamsson, K. Abrahamsson, Surface-enhanced Raman scattering imaging of single living lymphocytes with multivariate evaluation, Spec. Acta A 61 (2005) 755-760.

DOI: 10.1016/j.saa.2004.05.038

Google Scholar

[4] G. Breuzard, J.F. Angiboust, P. Jeannesson, M. Manfait, J.M. Millot, Surface-enhanced Raman scattering reveals adsorption of mitoxantrone on plasma membrane of living cells, Biochem. Biophys. Res. Commun. 320 (2004) 615-621.

DOI: 10.1016/j.bbrc.2004.05.203

Google Scholar

[5] S. Nei, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science 275 (1997) 1102-1106.

DOI: 10.1126/science.275.5303.1102

Google Scholar

[6] X. Dou, Y.M. Jung, Z. Cao, Y. Ozaki, Surface-enhanced Raman scattering of biological molecules on metal colloid II: effects of aggregation of gold colloid and comparison of effects of pH of Glycine solutions between gold and silver colloids, App. Spectrosc. 53 (1999) 1440-1447.

DOI: 10.1366/0003702991945803

Google Scholar

[7] C.R. Yonzon, C.L. Haynes, X. Zhang, J.T. Walsh, R.P. VanDuyne, A glucose biosensensor based on surface-enhanced Raman scattering: improved partition layer, temperature stability, reversibility and resistance to serum protein interference, Anal. Chem. 76 (2004) 78-85.

DOI: 10.1021/ac035134k

Google Scholar

[8] M. Fleischman, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett. 26 (1974) 163-166.

DOI: 10.1016/0009-2614(74)85388-1

Google Scholar

[9] D.L. Jeanmaire, R.P. VanDuyne, Surface Raman spectroelectrochemistry: Part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, J. Electroanal. Chem. 84 (1977) 1-20.

Google Scholar

[10] M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, J. Am. Chem. Soc. 99 (1977) 5215-5217.

DOI: 10.1021/ja00457a071

Google Scholar

[11] Z.Q. Tian, B. Ren, Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy, Annu. Rev. Phys. Chem. 55 (2004) 197-229.

DOI: 10.1146/annurev.physchem.54.011002.103833

Google Scholar

[12] C.B. Moore, Chemical and Biochemical Applications of Lasers, Academic Press, New York, 1979.

Google Scholar

[13] K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M. S. Feld, Ultrasensitive chemical analysis by Raman spectroscopy, Chem. Rev. 99 (1999) 2957-2975.

DOI: 10.1021/cr980133r

Google Scholar

[14] A. Campion, P. Kambhampati, Surface-enhanced Raman scattering Chem. Soc. Rev. 27 (1998) 241-250.

DOI: 10.1039/a827241z

Google Scholar

[15] C.L. Haynes, A.D. McFarland, R.P. VanDuyne, Surface-enhanced Raman scattering, Anal. Chem. 77 (2005) 338A-346A.

Google Scholar

[16] C.K. Klutse, A. Mayer, J. Wittkamper, B.M. Cullum, Applications of self-assembled monolayers in surface-enhanced Raman scattering J. Nanotech. 2012 (2012) 319038-1-319038-10.

DOI: 10.1155/2012/319038

Google Scholar

[17] M. V. Yigit, Z. Medarova, In vivo and ex vivo applications of gold nanoparticles for biomedical SERS imaging, Am. J. Nucl. Med. Mol. Imaging 2 (2012) 232-241.

Google Scholar

[18] B. Sharma, R.R. Frontiera, A.I. Henry, E. Ringe, R.P. VanDuyne, SERS: materials, applications, and the future, Materialstoday 15 (2012) 16-25.

Google Scholar

[19] M. Culha, B. Cullum, N. Lavrik, C.K. Klutse, Surface-enhanced Raman scattering as an emerging characterization and detection technique, J. Nanotech. 2012 (2012) 971380-1-971380-15.

DOI: 10.1155/2012/971380

Google Scholar

[20] G. McNay, D. Eustace, W.E. Smith, K. Faulds, D. Graham, Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications, Appl. Spectros. 65 (2011) 825-837.

DOI: 10.1366/11-06365

Google Scholar

[21] D. Graham, R. Goodacre, Chemical and bioanalytical applications of surface enhanced Raman scattering spectroscopy, Chem. Soc. Rev. 37 (2008) 883-884.

DOI: 10.1039/b804297g

Google Scholar

[22] M.J. Banholzer, J.E. Millstone, L. Qin, C.A. Mirkin, Rationally designed nanostructures for surface-enhanced Raman spectroscopy, Chem. Soc. Rev. 37 (2008) 885-897.

DOI: 10.1039/b710915f

Google Scholar

[23] S. Lal, N.K. Grady, J. Kundu, C.S. Levin, J.B. Lassiter, N.J. Halas, Tailoring plasmonic substrates for surface enhanced spectroscopies, Chem. Soc. Rev. 37 (2008) 898-911.

DOI: 10.1039/b705969h

Google Scholar

[24] X. M. Qian, S.M. Nie, Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications, Chem. Soc. Rev. 37 (2008) 912-920.

DOI: 10.1039/b708839f

Google Scholar

[25] M. Moskovits, Surface-enhanced Raman scattering, Rev. Mod. Phys. 57 (1985) 783-823.

Google Scholar

[26] K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Surface-enhanced Raman scattering and biophysics, J. Phys.: Condens. Matter 14 (2002) R597-R624.

DOI: 10.1088/0953-8984/14/18/202

Google Scholar

[27] M. Moskovits, Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals, J. Chem. Phys. 69 (1978) 4159-4161.

DOI: 10.1063/1.437095

Google Scholar

[28] A. Otto, J. Timper, J. Billmann, G. Kovacs, I. Pockrand, Surface roughness induced electronic Raman scattering, Surf. Sci. 92 (1980) L55-L57.

DOI: 10.1016/0039-6028(80)90237-x

Google Scholar

[29] K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS), Phys. Rev. Lett. 78 (1997) 1667-1670.

DOI: 10.1103/physrevlett.78.1667

Google Scholar

[30] S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, Science 275 (1997) 1102-1106.

DOI: 10.1126/science.275.5303.1102

Google Scholar

[31] P. Zhang, T.L. Haslett, C. Douketis, M. Moskovits, Mode localization in self-affine fractal interfaces observed by near-field microscopy, Phys. Rev. B 57 (1998) 15513-15518.

DOI: 10.1103/physrevb.57.15513

Google Scholar

[32] H. Xu, J. Aizpurua, M. Käll, P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Phys. Rev. E 62 (2000) 4318-4324.

DOI: 10.1103/physreve.62.4318

Google Scholar

[33] H.S. Nalwa, Encyclopedia of Nanoscience & Nanotechnology, American Scientific Publishers, USA, 2004.

Google Scholar

[34] H. Raether, Surface Plasmons, Springer-Verlag, New York, 1986.

Google Scholar

[35] M.L. Brongersma, P.G. Kik, Surface Plasmon Nanophotonics, Springer, Dordrecht, 2007.

Google Scholar

[36] K. Kneipp, M. Moskovit, H. Kneipp, Surface-enhanced Raman scattering: Physics and applications, Springer-Verlag, Berlin, 2006.

Google Scholar

[37] J. Haes, R.P. VanDuyne, Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics, Expert. Rev. Mol. Diag. 4 (2004) 527-537.

DOI: 10.1586/14737159.4.4.527

Google Scholar

[38] E. Altewischer, M.P. Van Exter,J. P. Woedman, Plasmon-assisted transmission of entangled photons, Nature 418 (2002) 304-306.

DOI: 10.1038/nature00869

Google Scholar

[39] R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, C. A. Mirkin, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science 277 (1997) 1078-1081.

DOI: 10.1126/science.277.5329.1078

Google Scholar

[40] K. Li, M.I. Stockman, D.J. Bergman, Self-similar chain of metal nanospheres as an Efficient Nanolens, Phys. Rev. Lett. 91 (2003) 227402-1-227402-4.

DOI: 10.1103/physrevlett.91.227402

Google Scholar

[41] M. K. Hossain, T. Shimada, M. Kitajima, K. Imura, H. Okamoto, Near-field Raman imaging and electromagnetic field confinement in the self-assembled monolayer array of gold nanoparticles, Langmuir 24 (2008) 9241-9244.

DOI: 10.1021/la8001543

Google Scholar

[42] S.A. Maier, H.A. Atwater, Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures, J. Appl. Phys. 98 (2005) 011101-1-011101-10.

DOI: 10.1063/1.1951057

Google Scholar

[43] J.J. Mock, D.R. Smith, S. Schultz, Local refractive index dependence of plasmon resonance spectra from individual nanoparticles, Nano Lett. 3 (2003) 485-491.

DOI: 10.1021/nl0340475

Google Scholar

[44] T. Itoh, V. Biju, M. Ishikawa, Y. Kikkawa, K. Hashimoto, A. Ikehata, Y. Ozaki, Surface-enhanced resonance Raman scattering and background light emission coupled with plasmon of single Ag nanoaggregates, J. Chem. Phys. 124 (2006) 134708-134713.

DOI: 10.1063/1.2177662

Google Scholar

[45] B. Pettinger, Light scattering by adsorbates at Ag particles: Quantum-mechanical approach for energy transfer induced interfacial optical processes involving surface plasmons, multipoles, and electron-hole pairs, J. Chem. Phys. 85 (1986) 7442-7451.

DOI: 10.1063/1.451333

Google Scholar

[46] T. Itoh, K. Yoshida, V. Biju, Y. Kikkawa, M. Ishikawa, Y. Ozaki, Second enhancement in surface-enhanced resonance Raman scattering revealed by an analysis of anti-Stokes and Stokes Raman spectra, Phys. Rev. B 76 (2007) 085405-085410.

DOI: 10.1103/physrevb.76.129901

Google Scholar

[47] A.M. Michaels, M. Nirmal, L.E. Brus, Surface-enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals, J. Am. Chem. Soc. 121 (1999) 9932-9939.

DOI: 10.1021/ja992128q

Google Scholar

[48] P. Etchegoin, H. Liem, R.C. Maher, L.F. Cohen, R.J.C. Brown, H. Hartigan, M.J.T. Milton, J.C. Gallop, A novel amplification mechanism for surface enhanced Raman scattering, Chem. Phys. Lett. 366 (2002) 115-121.

DOI: 10.1016/s0009-2614(02)01551-8

Google Scholar

[49] A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, Surface-enhanced Raman scattering, J. Phys.: Cond. Matt. 4 (1992) 1143-1212.

DOI: 10.1088/0953-8984/4/5/001

Google Scholar

[50] A. Otto, On the electronic contribution to single molecule surface enhanced Raman spectroscopy, Indian J. Phys. 77B (2003) 63-73.

Google Scholar

[51] B.N.J. Persson, On the theory of surface-enhanced Raman scattering, Chem. Phys. Lett. 82 (1981) 561-565.

Google Scholar

[52] J.F. Arenas, M.S. Woolley, I.L. Tocon, J.C. Otero, J.I. Marcos, Complete analysis of the surface-enhanced Raman scattering of pyrazine on the silver electrode on the basis of a resonant charge transfer mechanism involving three states, J. Chem. Phys. 112 (2000) 7669-7983.

DOI: 10.1063/1.481361

Google Scholar

[53] J. Billmann, G. Kovakcs, A. Otto, A., Raman spectroscopy of carbon monoxide adsorbed on silver island films, Surf. Sci. 238 (1990) 192-198.

DOI: 10.1016/0039-6028(90)90077-l

Google Scholar

[54] A. Otto, Surface-enhanced Raman scattering of adsorbates. J. Raman Spectrosc. 22 (1991) 743-752.

DOI: 10.1002/jrs.1250221204

Google Scholar

[55] T. Itoh, Y. Kikkawa, K. Yoshida, K. Hashimoto, V. Biju, M. Ishikawa, Y. Ozaki, Correlated measurements of plasmon resonance Rayleigh scattering and surface-enhanced resonance Raman scattering using a dark-field microscopy system, J. Photochem. Photobio. A. 183 (2006) 322-328.

DOI: 10.1016/j.jphotochem.2006.06.031

Google Scholar

[56] P. Hildebrandt, M. Stockburger, Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver, J.Phys. Chem. Vol. 88 (1984), pp.5935-5944.

DOI: 10.1021/j150668a038

Google Scholar

[57] A.R. Bizzarri, S. Cannistraro, Surface-enhanced resonance Raman spectroscopy signals from single myoglobin molecules, Appl. Spectrosc. 56 (2002) 1531-1537.

DOI: 10.1366/000370202321115977

Google Scholar

[58] B. Tolaieb, C.J.L. Constantino, R.F. Aroca, Surface-enhanced resonance Raman scattering as an analytical tool for single molecule detection, Analyst 129 (2004) 337-341.

DOI: 10.1039/b312812a

Google Scholar

[59] D.V. Murphy, K.U. Von Raben, R.K. Chang, P.B. Dorain, Surface-enhanced hyper-raman scattering from SO32− adsorbed on Ag powder, Chem. Phys. Lett. 85 (1982) 43-47.

DOI: 10.1016/0009-2614(82)83457-x

Google Scholar

[60] J.T. Golab, J.R. Sprague, K.T. Carron, G.C. Schatz, R.P. VanDuyne, A surface enhanced hyper-Raman scattering study of pyridine adsorbed onto silver: Experiment and theory, J. Chem. Phys. 88 (1988) 7942-7951.

DOI: 10.1063/1.454251

Google Scholar

[61] W.H. Yang, J. Hulteen, G.C. Schatz, R.P. VanDuyne, A surface-enhanced hyper-Raman and surface-enhanced Raman scattering study of trans-1,2-bis(4-pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: Experiment and theory, J. Chem. Phys. 104 (1996) 4313-4323.

DOI: 10.1063/1.471241

Google Scholar

[62] S.M. Nie, L.A. Lipscomb, N.T. Yu, Surface-enhanced hyper-Raman spectroscopy, Appl. Spectrosc. Rev. 26 (1991) 203-276.

DOI: 10.1080/05704929108050881

Google Scholar

[63] H. Kneipp, K. Kneipp, F. Seifert, Surface-enhanced hyper-Raman scattering (SEHRS) and surface-enhanced Raman scattering (SERS) by means of mode-locked Ti:sapphire laser excitation, Chem. Phys. Lett. 212 (1993) 374-378.

DOI: 10.1016/0009-2614(93)89340-n

Google Scholar

[64] A.M. Polubotko, V.P. Smirnov, Cross-section and selection rules in surface-enhanced hyper Raman scattering, J. Raman Spectrosc. 43 (2012) 380-388.

DOI: 10.1002/jrs.3032

Google Scholar

[65] K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, M.S. Dresselhauset, Nonlinear Raman probe of single molecules attached to colloidal silver and gold clusters, Top. Appl. Phys. 82 (2002) 227-249.

DOI: 10.1007/3-540-44948-5_11

Google Scholar

[66] T. Itoh, Y. Ozaki, H. Yoshikawa, T. Ihama, H. Masuhara, Hyper Rayleigh scattering and hyper Raman scattering of dye-adsorbed silver nanoparticles induced by focused continuous-wave near-infrared laser, Appl. Phys. Lett. 88 (2006) 084102-1-084102-3.

DOI: 10.1063/1.2172733

Google Scholar

[67] E.C. Le Ru, M. Meyer, P.G. Etchegoin, Proof of single-molecule sensitivity in surface-enhanced Raman scattering (SERS) by means of a two-analyte technique, J. Phys. Chem. B 110 (2006) 1944-1948.

DOI: 10.1021/jp054732v

Google Scholar

[68] C.J.L. Constantino, T.Lemma, P.A. Antunes, R.F. Aroca, Single-molecule detection using surface-enhanced resonance Raman scattering and Langmuir−Blodgett monolayers, Anal. Chem. 73 (2001) 3674-3678.

DOI: 10.1021/ac0101961

Google Scholar

[69] P.J.G. Goulet and R.F. Aroca, Distinguishing individual vibrational fingerprints: Single-molecule surface-enhanced resonance Raman scattering from one-to-one binary mixtures in Langmuir−Blodgett monolayers, Anal. Chem. 29 (2007) 2728-2734.

DOI: 10.1021/ac062059f

Google Scholar

[70] P.G. Etchegoin, M. Meyer, E. Blackie, E.C. Le Ru, Statistics of single-molecule surface-enhanced Raman scattering signals: Fluctuation analysis with multiple analyte techniques, Anal. Chem. 79 (2007) 8411-8415.

DOI: 10.1021/ac071231s

Google Scholar

[71] N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, Near-field Raman imaging of organic molecules by an apertureless metallic probe scanning optical microscope, J. Chem. Phys. 117 (2002) 1296-1301.

DOI: 10.1063/1.1485731

Google Scholar

[72] M.S. Anderson, Locally enhanced Raman spectroscopy with an atomic force microscope, Appl. Phys. Lett. 76 (2000) 3130-3132.

DOI: 10.1063/1.126546

Google Scholar

[73] A. Hartschuh, E.J. Sanchez, X.S. Xie, L. Novotny, High-resolution near-field Raman microscopy of single-walled carbon nanotubes, Phys. Rev. Lett. 90 (2003) 95503-95506.

DOI: 10.1103/physrevlett.90.095503

Google Scholar

[74] M. Micic, N. Klymyshyn, Y.D. Suh, H.P Lu, Finite element method simulation of the field distribution for AFM tip-enhanced surface-enhanced Raman scanning microscopy, J. Phys. Chem. B 107 ( 2003) 1574-1584.

DOI: 10.1021/jp022060s

Google Scholar

[75] B. Pettinger, G. Picardi, R. Schuster, G. Ertl, Surface-enhanced and STM tip-enhanced Raman spectroscopy of CN− ions at gold surfaces, J. Electroanal. Chem. 554-555 (2003) 293-299.

DOI: 10.1016/s0022-0728(03)00242-0

Google Scholar

[76] A. Otto, What is observed in single molecule SERS, and why?, J. Raman Spectrosc. 33 (2002) 593-598.

DOI: 10.1002/jrs.879

Google Scholar

[77] P.G. Etchegoin, E.C Le Ru, A perspective on single molecule SERS: Current status and future challenges, Phys. Chem. Chem. Phys. 10 (2008) 6079-6089.

DOI: 10.1039/b809196j

Google Scholar

[78] J. Zeng, H. Jia, J. An, X. Han, W. Wu, B. Zhao, Y. Ozaki, Preparation and SERS study of triangular silver nanoparticle self-assembled fill, J. Raman Spectrosc. 39 (2008) 1673-1678.

DOI: 10.1002/jrs.2079

Google Scholar

[79] P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Au nanoparticles target cancer, Nanotoday 2 (2007) 18-29.

DOI: 10.1016/s1748-0132(07)70016-6

Google Scholar

[80] K. Imura, H. Okamoto, M.K. Hossain, M. Kitajima, Near-field imaging of surface-enhanced Raman active sites in aggregated gold nanoparticles, Chem. Lett. 35 (2005) 78-79.

DOI: 10.1246/cl.2006.78

Google Scholar

[81] P.L. Stiles, F.A. Dieringer, N.C. Shah, R.P. VanDuyne, Surface-enhanced Raman spectroscopy, Annu. Rev. Anal. Chem. 1 (2008) 601-626.

DOI: 10.1146/annurev.anchem.1.031207.112814

Google Scholar

[82] C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendroff, J. Gao, L. Gou, S.E. Hunyadi, T. Li, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications, J. Phys. Chem. 109 (2005) 13857-13870.

DOI: 10.1021/jp0516846

Google Scholar

[83] Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, J. Israelachvil, The role of interparticle and external forces in nanoparticle assembly, Nat. Mat. 7 (2008) 527-538.

DOI: 10.1038/nmat2206

Google Scholar

[84] Y. Xia, Y. Yin, Y. Lu, J. McLellan, Template-assisted self-assembly of spherical colloids into complex and controllable structures, Adv. Func. Mat. 13 (2003) 907-918.

DOI: 10.1002/adfm.200300002

Google Scholar

[85] J.A. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. VanDuyne, Biosensing with plasmonic nanosensors, Nat. Mat. 7 (2008) 442-453.

DOI: 10.1038/nmat2162

Google Scholar

[86] S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, H.A. Atwater, Plasmonics—a route to nanoscale optical devices, Adv. Mat. 13 (2001) 1501-1505.

DOI: 10.1002/1521-4095(200110)13:19<1501::aid-adma1501>3.0.co;2-z

Google Scholar

[87] Y. Wu, T. Livneh, Y.X. Zhang, G. Cheng, J. Wang, J. Tang, M. Moskovits, G.D. Stucky, Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays, Nano Lett. 40 (2004) 2337-2342.

DOI: 10.1021/nl048653r

Google Scholar

[88] F. Le, D.W. Brandl, Y.A. Urzhumov, H. Wang, J. Kundu, N.J. Halas, J. Aizpurua, P. Nordlander, Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption, ACS Nano 2 (2008) 708-718.

DOI: 10.1021/nn800047e

Google Scholar

[89] J. Turkevich, J. Hillier, P. C. Stevenson, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday. Soc. 11 (1951) 55-75.

DOI: 10.1039/df9511100055

Google Scholar

[90] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, A. Plech, Turkevich Method for Gold Nanoparticle Synthesis Revisited, J. Phys. Chem. B 110 (2006) 15700-15707.

DOI: 10.1021/jp061667w

Google Scholar

[91] G. Frens, Particle size and sol stability in metal colloids, Coll. & Polym. Sci. 250 (1972) 736-741.

DOI: 10.1007/bf01498565

Google Scholar

[92] G. Frens, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature (London) Phys. Sci. 241 (1973) 20-22.

DOI: 10.1038/physci241020a0

Google Scholar

[93] M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system, Chem. Com. 7 (1994) 801-802.

DOI: 10.1039/c39940000801

Google Scholar

[94] A. Manna, P. Chen, H. Akiyama, T. Wei, K. Tamada, W. Knoll, Optimized photoisomerization on gold nanoparticles capped by unsymmetrical azobenzene disulfides, Chem. Mater. 15 (2003) 20-28.

DOI: 10.1021/cm0207696

Google Scholar

[95] S.D. Perrault, W.C.W. Chan, Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50−200 nm, J. Am. Chem. Soc. 131 (2009) 17042-17043.

DOI: 10.1021/ja907069u

Google Scholar

[96] A. Wei, Designing plasmonic nanomaterials as sensors of biochemical transport, e-J. Surf. Sci. Nanotech. 4 (2006) 9-18.

Google Scholar

[97] M.K. Hossain, T. Shimada, M. Kitajima, K. Imura, H Okamoto, Raman and near-field spectroscopic study on localized surface plasmon excitation from the 2D nanostructure of gold nanoparticles, J. Microsc. Vol. 229 (2008) 327-330.

DOI: 10.1111/j.1365-2818.2008.01908.x

Google Scholar

[98] L.G. Olson, R.H. Uibel, J.M. Harris, C18-Modified Metal-Colloid Substrates for Surface-Enhanced Raman Detection of Trace-Level Polycyclic Aromatic Hydrocarbons in Aqueous Solution, Appl. Spectrosc. 58 (2004) 1394-1400.

DOI: 10.1366/0003702042641380

Google Scholar

[99] K. Imura, H. Okamoto, M.K. Hossain, M. Kitajima, Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites, Nano Lett. 6 (2006) 2173-2176.

DOI: 10.1021/nl061650p

Google Scholar

[100] T. Itoh, K. Hashimoto, Y. Ozaki, Polarization dependences of surface plasmon bands and surface-enhanced Raman bands of single Ag nanoparticles, Appl. Phys. Lett. 83 (2003) 2274-2276.

DOI: 10.1063/1.1604188

Google Scholar

[101] X.X. Han, Y. Kitahama, Y. Tanaka, J. Guo, W.Q. Xu, B. Zhao, Y. Ozaki, Simplified Protocol for Detection of Protein−Ligand Interactions via Surface-Enhanced Resonance Raman Scattering and Surface-Enhanced Fluorescence, Anal. Chem., 80 (2008) 6567-6572.

DOI: 10.1021/ac800642g

Google Scholar

[102] T. Itoh, K. Hashimoto, V. Biju, M. Ishikawa, B.R. Wood, Y. Ozaki, Elucidation of interaction between metal-free tetraphenylporphine and surface Ag atoms through temporal fluctuation of surface-enhanced resonance Raman scattering and background-light emission, J. Phys. Chem. B 110 (2006) 9579-9585.

DOI: 10.1021/jp0609939

Google Scholar

[103] T. Shimada, K. Imura, M.K. Hossain, M. Kitajima, H. Okamoto, Near-Field Study on Correlation of Localized Electric Field and Nanostructures in Monolayer Assembly of Gold Nanoparticles, J. Phys. Chem. C 112 (2008) 4033-4035.

DOI: 10.1021/jp8004508

Google Scholar

[104] , where ISERS, Ibulk, Nbulk, and NSERS are the SERS intensity, the intensity for the bulk sample, the number of molecules for the bulk sample, and the number of molecules of the SERS sample, respectively.

Google Scholar

[105] E.J. Liang, X.L. Ye, W. Kiefer, Surface-Enhanced Raman Spectroscopy of Crystal Violet in the Presence of Halide and Halate Ions with Near-Infrared Wavelength Excitation, J. Phys. Chem. A 101 (1997) 7330-7335.

DOI: 10.1021/jp971960j

Google Scholar

[106] T. Watanabe, B. Pettinger, Surface-enhanced Raman scattering from crystal violet adsorbed on a silver electrode, Chem. Phys. Lett. 89 (1982) 501-507.

DOI: 10.1016/0009-2614(82)83054-6

Google Scholar

[107] I. Tsukamoto, K. Machida, Intensity measurement of resonance Raman spectra of adsorbed dyes by the divided disk method, J. Raman Spectrosc. 17 (1986) 199-202.

DOI: 10.1002/jrs.1250170208

Google Scholar

[108] P. Zhang, S. Smith, G. Rumbles, M.E. Himmel, Direct imaging of surface-enhanced Raman scattering in the near field, Langmuir, 21 (2005) 520-523.

DOI: 10.1021/la048037a

Google Scholar

[109] G.G. Huang, M.K. Hossain, X.X. Han, Y. Ozaki, A novel reversed reporting agent method for surface-enhanced Raman scattering; highly sensitive detection of glutathione in aqueous solutions, Analyst, 134 (2009) 2468-2474.

DOI: 10.1039/b914976g

Google Scholar

[110] C.H. Munro, W.E. Smith, M. Garner, J. Clarkson, P.C. White, Characterization of the Surface of a Citrate-Reduced Colloid Optimized for Use as a Substrate for Surface-Enhanced Resonance Raman Scattering, Langmuir 11 (1995) 3712-3720.

DOI: 10.1021/la00010a021

Google Scholar

[111] R. F. Aroca, R. A. Alvarez-Puebla, N. Pieczonka, S. Sanchez-Cortez, J.V. Garcia-Ramos, Surface-enhanced Raman scattering on colloidal nanostructures Adv. Colloid Interface Sci. 116 (2005), 45-61.

DOI: 10.1016/j.cis.2005.04.007

Google Scholar

[112] A.K. Ooka, K.A. Kuhar, N. Cho, R.L. Garrel, Surface interactions of a homologous series of alpha,omega-amino acids on colloidal silver and gold, Biospectroscopy, 5 (1999), 9-17.

DOI: 10.1002/(sici)1520-6343(1999)5:1<9::aid-bspy3>3.0.co;2-t

Google Scholar

[113] J.F. Arenas, J.L. Castro, J. C. Otero, J.I. Marcos, Study of interaction between aspartic acid and silver by surface-enhanced Raman scattering on H(2)O and D(2)O sols Biopolymers 62 (2001) 241-248.

DOI: 10.1002/bip.1019

Google Scholar

[114] J.S. Suh, M. Moskovits, Surface enhanced Raman spectroscopy of aminoacids and nucleotide bases adsorbed on silver, J. Am. Chem. Soc. 108 (1986) 4711-4718.

DOI: 10.1021/ja00276a005

Google Scholar

[115] A. Singha, S. Dasgupta, A. Roy, Comparison of metal–amino acid interaction in Phe–Ag and Tyr–Ag complexes by spectroscopic measurements Biophys. Chem. 120 (2006) 215-224.

DOI: 10.1016/j.bpc.2005.11.006

Google Scholar

[116] T.M. Herne, A.M. Ahern, R.L. Garrell, Surface enhanced Raman spectroscopy of tripeptides adsorbed on colloidal silver, Anal. Chim. Acta 246 (1991) 75-84.

DOI: 10.1016/s0003-2670(00)80666-2

Google Scholar

[117] T.M. Herne, A.M. Ahern, R.L. Garrell, Surface enhanced Raman spectroscopy of peptides: preferential N-terminal adsorption on colloidal silver, J. Am. Chem. Soc. 113 (1991) 846-854.

DOI: 10.1021/ja00003a018

Google Scholar

[118] E. Podstawka, R. Borszowska, M. Grabowska, M. Drag, P. Kafarski, L.M. Proniewicz, Investigation of molecular structures and adsorption mechanisms of phosphonodipeptides by surface-enhanced Raman, Raman, and infrared spectroscopies, Surf. Sci. 599 (2005), 207-220.

DOI: 10.1016/j.susc.2005.09.048

Google Scholar

[119] R. Stosch, A. Henrion, D. Schiel, B. Guttler, Surface enhanced Raman scattering based approach on quantitative determination of creatinine in human serum, Anal. Chem. 77 (2005) 7386-7392.

DOI: 10.1021/ac0511647

Google Scholar

[120] B. Giese, D. McGaughton,Surface-enahnced Raman spectroscopy study of uracil: The influence of the surface substrate, surface potential ans pH, J. Phys. Chem. B 106 (2002) 1461-1470.

DOI: 10.1021/jp011986h

Google Scholar

[121] J. Sarkar, J. Chowdhury, M. Ghosh, R. De, G.B. Talapatra, Adsorption of 2-aminobenzothiazole on colloidal silver nanoparticles. An exxperimental and theoritical surface-enhanced Raman scattering study, J. Phys. Chem. B 109 (2005) 12861-12867.

DOI: 10.1021/jp050679z

Google Scholar

[122] W.F. Nirode, G.L. Devault, J. Sepaniak, On column surface-enhanced detection in capilliary electrophoresis using running buffers containing silver colloidal solution, Anal. Chem. 72 (2000) 1866-1871.

DOI: 10.1021/ac991248d

Google Scholar

[123] K. Kneipp, Y. Wang, R.R. Dasari, M.S. Feld, Near-infrared surface-enhanced Raman scattering (NIR-SERS) of neurotransmitters in colloidal silver solutions Spectrochem. Acta 51A (1995) 481-487.

DOI: 10.1016/0584-8539(94)00235-4

Google Scholar

[124] K. Faulds, L. Stewart, W.E. Smith, D. Graham, Quantitative detection of dye labelled using surface enhanced resonance Raman Scattering (SERS) from silver nanoparticles, Talanta 67 (2005) 667-671.

DOI: 10.1016/j.talanta.2005.06.019

Google Scholar

[125] S.E.J. Bell, N.M.S Sirimuthu, Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides, J. Am. Chem. Soc. 128 (2006) 15580-15581.

DOI: 10.1021/ja066263w

Google Scholar

[126] K. Faulds, W.E. Smith, D. Graham, Evaluation of surface-enhanced resonance of raman scattering for quantitative DNA analysis, Anal. Chem. 76 (2004) 412-417.

DOI: 10.1021/ac035060c

Google Scholar

[127] G. Breuzard, J.M. Millot, J.F. Riou, M. Manfait, Selective interactions with ethidiums with g-quadruplex of DNA revealed by surface enhanced Raman scattering, Anal. Chem. 75 (2003) 4305-4311.

DOI: 10.1021/ac034123o

Google Scholar

[128] B. Rospendowski, K. Kelly, C.R. Wolf, W.E. Smith, Surface-enhanced resonance Raman scattering from cytochromes P-450 adsorbed on citrate reduced silver sols, J. Am. Chem. Soc. 113 (1991) 1217-1225.

DOI: 10.1021/ja00004a023

Google Scholar

[129] A.R. Bizzarri, S. Cammostraro, Surface enhanced resonance spectroscopy signals from myoglobin molecules, Appl. Spectrosc. 56 (2002) 1531-1537.

DOI: 10.1366/000370202321115977

Google Scholar

[130] M. Feng, H. Tachikawa, Surface enhanced resonance Raman spectroscopic characterization of the protein native structure, J. Am. Chem. Soc. 130 (2008) 7443-7448.

DOI: 10.1021/ja8006337

Google Scholar

[131] G.V.P. Kumar, B.A.A. Reddy, M. Arif, T.K. Kundu, C. Narayana, Surface enhanced Raman scattering studiesof human transcriptional coactivator p.300, J. Phys. Chem. B 110 (2006) 16787-16792.

DOI: 10.1021/jp063071e

Google Scholar

[132] I. Pavel, E. McCarney, A. Elkhaled, A. Morrill, K. Plaxco, M. Moskovits, Label-Free SERS Detection of Small Proteins Modified to Act as Bifunctional Linkers, J. Phys. Chem. C 112 (2008) 4880-4883.

DOI: 10.1021/jp710261y

Google Scholar

[133] X. Dou, T. Takama, Y. Yamaguchi, H. Yamamoto, Y. Ozaki, Enzyme immunoassay utilizing surface-enhanced Raman scattering of the enzyme reaction product, Anal. Chem. 69 (1997) 1492-1495.

DOI: 10.1021/ac960995x

Google Scholar

[134] Y. Cui, B. Ren, J.L. Yao, R.A. Gu, Z.Q. Tian, Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy, J. Phys. Chem. B 110(9) (2006) 4002-4006.

DOI: 10.1021/jp056203x

Google Scholar

[135] A. Sengupta, M. L. Laucks, E.J. Davis, Surface-Enhanced Raman Spectroscopy of Bacteria and Pollen, Appl. Spectrosc. 59 (2005) 1016-1023.

DOI: 10.1366/0003702054615124

Google Scholar

[136] R.M. Jarvis, R. Goodacre, Discrimination of bacteria using surface-enhanced Raman spectroscopy, Anal. Chem. 76 (2004) 40-47.

DOI: 10.1021/ac034689c

Google Scholar

[137] R.M. Jarvis, A. Brooker and R. Goodacre, Surface-Enhanced Raman Spectroscopy for Bacterial Discrimination Utilizing a Scanning Electron Microscope with a Raman Spectroscopy Interface, Anal. Chem. 76 (2004) 5198-5202.

DOI: 10.1021/ac049663f

Google Scholar

[138] R.M. Jarvis, N. Law, I.T. Shadi, P. O'Brien, J.R. Lloyd, R. Goodacre, Surface-enhanced Raman scattering from intracellular and extracellular bacterial locations, Anal. Chem. 80 (2008) 6741-6746.

DOI: 10.1021/ac800838v

Google Scholar

[139] R.J. Dijkstra, W.J.J.M. Scheenen, N. Dam, E.W. Roubos, J.J.T. Meulen, Monitoring neurotransmitter release by surface-enhanced Raman spectroscopy, J. Neurosci. Meth. 159 (2007) 43-45.

DOI: 10.1016/j.jneumeth.2006.06.017

Google Scholar

[140] A. Sengupta, C.K. Thai, M.S.R. Sastry, J.F. Matthaei, D.T. Schwartz, E.J. Davis, F. Baneyx, A Genetic Approach for Controlling the Binding and Orientation of Proteins on Nanoparticles, Langmuir 24 (2008) 2000-2008.

DOI: 10.1021/la702079e

Google Scholar

[141] H. Xu, E.J. Bjerneld, M. Käll, L. Börjesson, Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering, Phys. Rev. Lett. 83(21) (1999) 4357-4360.

DOI: 10.1103/physrevlett.83.4357

Google Scholar

[142] T. Vo-Dinh, L.R. Allain, D.L. Stokes, Cancer gene detection using surface-enhanced Raman scattering (SERS), J. Raman spectrosc. 33 (2002) 511-516.

DOI: 10.1002/jrs.883

Google Scholar

[143] Y.C. Cao, R. Jin, C.A. Mirkin, Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection, Science 297 (2002) 1536-1539.

DOI: 10.1126/science.297.5586.1536

Google Scholar

[144] A.E. Grow, L.L. Wood, J.L. Claycomb, P.A. Thompson, New biochip technology for label-free detection of pathogens and their toxins, J. Microbiol. Meth. 53 (2003) 221-233.

DOI: 10.1016/s0167-7012(03)00026-5

Google Scholar

[145] P.J.G. Goulet, R.F. Aroca, Distinguishing individual vibrational fingerprints: single-molecule surface-enhanced resonance raman scattering from one-to-one binary mixtures in Langmuir-Blodgett monolayers, Anal. Chem. 79 (2007) 2728-2734.

DOI: 10.1021/ac062059f

Google Scholar

[146] C. Eliasson, A. Loren, J. Engelbrektsson, M. Josefson, J. Abrahamsson, K. Abrahamsson, Surface-enhanced Raman scattering imaging of single living lymphocytes with multivariate evaluation, Spec. Acta A 61 (2005) 755-760.

DOI: 10.1016/j.saa.2004.05.038

Google Scholar

[147] J. Kneipp, H. Kneipp, W.L. Rice, K. Kneipp, Optical probes for biological applications based on surface enhanced Raman scattering from indocyanine green on gold nanoparticles, Anal. Chem., 77 (2005) 2381-2385.

DOI: 10.1021/ac050109v

Google Scholar

[148] S. Lee, S. Kim, J. Choo, S.Y. Shin, Y.H. Lee, H.Y. Choi, S. Ha, K. Kang, C.H. Oh, Biological Imaging of HEK293 Cells Expressing PLCγ1 Using Surface-Enhanced Raman Microscopy, Anal. Chem., 79 (2007) 916-922.

DOI: 10.1021/ac061246a

Google Scholar

[149] L.B. Hunt, The true story of Purple of Cassius, Gold Bull., 9 (1976) 134-139.

Google Scholar

[150] K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propagat., Vol. 14 (1966), pp.302-307.

DOI: 10.1109/tap.1966.1138693

Google Scholar

[151] L.M. Liz-Marzán, Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles, Langmuir 22(1) (2006) 32-41.

DOI: 10.1021/la0513353

Google Scholar

[152] M.P. Pileni, Control of the Size and Shape of Inorganic Nanocrystals at Various Scales from Nano to Macrodomains, J. Phys. Chem. C 111 (2007) 9019-9038.

DOI: 10.1021/jp070646e

Google Scholar

[153] C. Noguez, Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical, J. Phys. Chem. C 111 (2007) 3806-3819.

DOI: 10.1021/jp066539m

Google Scholar

[154] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston, 1995.

Google Scholar

[155] F. Hao, C.L. Nehl, J.H. Hafner, P. Nordlander, Plasmon Resonances of a Gold Nanostar, Nano Lett. 7 (2007) 729-732.

DOI: 10.1021/nl062969c

Google Scholar

[156] M. Hu, C. Novo, A. Funston, H. Wang, H. Petrova, S. Zou, P. Mulvaney, Y. Xia, G. V. Hartland, Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance, J. Mater. Chem., 18 (2008) 1949-1960.

DOI: 10.1039/b714759g

Google Scholar