Fabrication and Characterization of Highly Ordered Porous Alumina Templates by a Two-Step Anodization Process

Article Preview

Abstract:

Highly ordered through-hole anodic porous alumina membranes were fabricated by electrochemical oxidation of aluminum in a controlled two-step process. A teflon dispositive was used to ensure single side anodization. Under the most appropriate condition for the fabrication of ideally ordered anodic aluminum oxide (AAO), the voltage used was 15 V during 24 h in a 15 % w/v sulfuric acid solution. SEM, TEM and FESEM characterization shows that the as-fabricated AAO film has a defect-free array of straight parallel channels perpendicular to the surface. The thickness of the porous membrane is 20 microns, approximately. The ordered channels are formed in a honey comb arrange with a pore diameter in the range 20-30 nm, wall thickness of 10-20 nm, interpore distance of 40 nm, and high aspect ratio of 850. The pore density, quantified by image analysis, is 5.4×1010 pore/cm2; perfect ordering was maintained in the full depth of the membrane. Dimensions of this porous structure provide a convenient way to precision engineer the nanoscale morphology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-81

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Chen, J. S. Wu, J. H. Yuan, X. H. Xia and X. H, An environment-friendly electrochemical detachment method for porous anodic alumina, J. Elec. Chem. 600 (2007) 257-264.

DOI: 10.1016/j.jelechem.2006.10.022

Google Scholar

[2] S. Shingubara, Fabrication of Nanomaterials Using Porous Alumina Templates, J. Nanopart. Res. 5 (2003) 17-30.

Google Scholar

[3] C. Y. Suh and J. Sang, Electrochemical fabrication of CdS/Co nanowire arrays in porous aluminum oxide templates, Bull. Korean Chem. Soc. 23 (2002) 1519-1523.

DOI: 10.5012/bkcs.2002.23.11.1519

Google Scholar

[4] G. Che, B. B. Lakshmi, E. R. Fisher and C. R. Martin, Carbon nanotubule membranes for electrochemical energy storage and production, Nature 393 (1998) 346-349.

DOI: 10.1038/30694

Google Scholar

[5] K. Fukuda and H. Masuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science 268 (1995) 1466-1468.

DOI: 10.1126/science.268.5216.1466

Google Scholar

[6] L. Ba and W. S. Li, Influence of anodizing conditions on the ordered pore formation in anodic alumina, J. Phys. D: Appl. Phys. 33 (2000) 2527-2531.

DOI: 10.1088/0022-3727/33/20/302

Google Scholar

[7] V.I. Shershulsky and V. P. Parkhutik, Theoretical modelling of porous oxide growth on aluminium, J. Phys. D: Appl. Phys. 25 (1992) 1258-1263.

DOI: 10.1088/0022-3727/25/8/017

Google Scholar

[8] G. E. Thompson, Porous anodic alumina: fabrication, characterization and applications, Thin Solid Films 297 (1997) 192-201.

DOI: 10.1016/s0040-6090(96)09440-0

Google Scholar

[9] E. V. Koroleva, G. E. Thompson, P. Skeldon and B. Noble, Crystallographic dissolution of high purity aluminium, Proc. Royal Soc. A. 463 (2007) 1729-1748.

DOI: 10.1098/rspa.2007.1846

Google Scholar

[10] J. J. Perez Bueno, M. E. Rodriguez, O. Zelaya-Angel, R. Baquero, J. Gonzalez-Hernadez, L. Baños and B. J. Fitzpatrick, Growth and characterization of Cd1−xZnxTe crystals with high Zn concentrations, J. Crystal Growth 209 (2000) 701-708.

DOI: 10.1016/s0022-0248(99)00514-x

Google Scholar

[11] G. Bailey and G. C. Wood, The morphology of anodic films formed on. aluminium in oxalic acid, Trans. Inst. Metal. Finish. 52 (1974) 187-199.

DOI: 10.1080/00202967.1974.11870328

Google Scholar

[12] G. Patermarakis, Aluminium anodising in low acidity sulphate baths: growth mechanism and nanostructure of porous anodic films, J. Solid State Electrochem. 10 (2006) 211-222.

DOI: 10.1007/s10008-005-0665-7

Google Scholar

[13] J.M. Mortero, M. Sarret and C. Müller, Self-ordered porous alumina by two-step anodizing at constant current: Behaviour and evolution of the structure, Micropor. Mesopor. Mat. 136 (2010) 68-74.

DOI: 10.1016/j.micromeso.2010.07.022

Google Scholar

[14] G. Patermaraki, J. Chandrinos and K. Masavetas, Formulation of a holistic model for the kinetics of steady state growth of porous anodic alumina films, J. Solid State Electrochem. 11 (2007) 1191-1204.

DOI: 10.1007/s10008-006-0259-z

Google Scholar

[15] S. H. Ko, D. W. Lee, H. C. Park, K. H. Lee and W. Hwang, Mechanical properties and residual stress measurements in anodic aluminium oxide structures using nanoindentation, Glass Phys. Chem. 31 (2005) 356-363.

DOI: 10.1007/s10720-005-0069-x

Google Scholar

[16] K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn and U. Gosele, Self-ordering regimes of porous alumina: The 10 porosity rule, Nanoletters 2 (2002) 677-680.

DOI: 10.1021/nl025537k

Google Scholar