Study on the Structure and Vibrational Spectra of Functionalized Au Nanoparticles: Theoretical and Experimental Results

Article Preview

Abstract:

Structural and spectral characteristics of functionalized Au nanoparticles have been studied by electron microscopy, vibrational spectroscopy and quantum chemical methods. Gold nanoparticles were synthesized through a microwave induced reaction, starting with a two phase system using 1-dodecanethiol as passivating agent. The nanoparticles were structurally characterized using aberration-corrected scanning transmission electron microscopy (Cs-STEM) equipped with a high-angle annular dark field (HAADF) detector. The main structures of the nanoparticles were fcc-like and icosahedrons. Density functional theory (DFT) calculations, optimized geometries and vibrational spectra, have been carried out using 6-31G* basis sets and B3LYP functional. The experimental and theoretical infrared spectra of the functionalized Au nanoparticles show the main absorption peaks from 1-dodecanethiol, C-H stretch from CH2 at 2917, 2848 and from CH3 at 2954 and 2872 cm-1, C-H from-CH2 deformation at 1467 and from CH3 at 1376 cm-1. Infrared spectra of octanethiol and gold nanoparticles functionalized with octanethiol were also obtained. These nanostructures can be used in applications such as diagnostics, biosensing, therapeutics, and drug delivery.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-89

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Anil Kumar, H.M., Xu Zhang, Keyang Huang, Shubin Jin, Juan Liu, Tuo Wei, Weipeng Cao, Guozhang Zou, Xing-Jie Liang, Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment, Biomaterials 33 (2012) 1180-1189.

DOI: 10.1016/j.biomaterials.2011.10.058

Google Scholar

[2] Y. Yang and S. Chen, Surface manipulation of the electronic energy of subnanometer-sized gold clusters: An electrochemical and spectroscopic investigation, Nano Lett. 3 (2003) 75-79.

DOI: 10.1021/nl025809j

Google Scholar

[3] P.M. Tiwari, K. Vig, V.A. Dennis and S.R. Singh, Functionalized gold nanoparticles and their biomedical applications, Nanomaterials 1 (2011) 31-63.

DOI: 10.3390/nano1010031

Google Scholar

[4] Chanel K. Yee, R.J., Abraham Ulman, Henry White, Alexander King, Miriam Rafailovich, and Jonathan Sokolov, Novel one-phase synthesis of thiol-functionalized gold, palladium, and iridium nanoparticles using superhydride, Langmuir 15 (1999).

DOI: 10.1021/la990015e

Google Scholar

[5] Conklin, D., Plasmon Enhanced Photoconduction in Porphyringold Nanoparticle Assemblies (University of Pennsylvania, USA, 2011).

Google Scholar

[6] S. Link and M. A. El-Sayed, Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles, J. Phys. Chem. B 103 (1999) 4212-4217.

DOI: 10.1021/jp984796o

Google Scholar

[7] J. L. Zhang, R. S. Srivastava, R. D. K. Misra, Core-shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: Synthesis, characterization, and LCST of viable drug-targeting delivery system, Langmuir 23 (2007).

DOI: 10.1021/la0636199

Google Scholar

[8] D. Sutton, N. Nasongkla, E. Blanco and J. Gao, Functionalized Micellar Systems for Cancer Targeted Drug Delivery, Pharm. Res. 24 (2007) 1029-1046.

DOI: 10.1007/s11095-006-9223-y

Google Scholar

[9] Yu-Feng Li and Chunying Chen, Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications, Small 7 (2011) 2965-2980.

DOI: 10.1002/smll.201101059

Google Scholar

[10] A. Shakeri-Zadeh, G. Ali Mansoori, A. Reza Hashemian, H. Eshghi, A. Sazgarnia, A. Reza Montazerabadi, Cancerous cells targeting and destruction using folate conjugated gold nanoparticles, Dyn. Biochem. Process Biotech. Mol. Biol. 4 (2010) 6-12.

Google Scholar

[11] V. G. Yarzhemsky and C. Battocchio, The structure of gold nanoparticles and Au based thiol self-organized monolayers, Russ. J. Inor. Chem. 56 (2011) 2147-2159.

DOI: 10.1134/s003602361114004x

Google Scholar

[12] A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, Gold nanoparticles: A revival in precious metal administration to patients, Nano Lett. 11 (2011) 4029-4036.

DOI: 10.1021/nl202559p

Google Scholar

[13] P. C. Chen, S.C. M Mwakwari, and A. K Oyelere, Gold nanoparticles: From nanomedicine to nanosensing, Nanotechnology, Science and Applications 1 (2008) 45-66.

DOI: 10.2147/nsa.s3707

Google Scholar

[14] D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin, Gold nanoparticles for biology and medicine, Angew. Chem. Int. Ed. 49 (2010) 3280-3294.

DOI: 10.1002/anie.200904359

Google Scholar

[15] P. K. Jain, K. Seok Lee, I. H. El-Sayed, and M. A. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine, J. Phys. Chem. B 110 (2006).

DOI: 10.1021/jp057170o

Google Scholar

[16] H. C. Huang, S. Barua, G. Sharma, S. K. Dey, K. Rege, Inorganic nanoparticles for cancer imaging and therapy, J. Control. Rel. Vol. 155 (2011) 344-357.

DOI: 10.1016/j.jconrel.2011.06.004

Google Scholar

[17] Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent, Size-dependent cytotoxicity of gold nanoparticles, Small 3 (2007) 1941-1449.

DOI: 10.1002/smll.200700378

Google Scholar

[18] I. Boustani, Systematic ab initio investigation of bare boron clusters: Determination of the geometry and electronic structures of Bn (n=52 – 14), Phys. Rev. B 55 (1997) 16426-16438.

DOI: 10.1103/physrevb.55.16426

Google Scholar