Microporous Carbonaceous Materials Incorporated with Metal (Ti, V and Zn) for Hydrogen Storage

Article Preview

Abstract:

The present research work is focused on the development and characterization of light weight microporous carbonaceous material, such as graphite (53150 micron) incorporated with either titanium n-butoxide, titanium diisopropoxide bis (2,4-pentanedionate), vanadium 2,4-pentane-dionate or zinc 2,4-pentanedionate having varying wt% of the metal (28%) using 2-propanol/ethanol as solvent at 4050 °C. The calcination has been carried out at 100, 150 and 200 °C, except the samples with titanium diisopropoxide bis (2,4-pentanedionate) which are calcined at 80 °C. FESEM along with atomic absorption studies revealed that the maximum incorporation of metals (Zn, V and Ti) in graphite has been observed with 4 wt% of zinc 2,4-pentanedionate calcined at 100 °C, 4 wt% of vanadium 2,4-pentanedionate calcined at 100 °C, 4 wt% of titanium n-butoxide calcined at 100 °C and 2 wt% of titanium diisopropoxide bis (2,4-pentanedionate) calcined at 80 °C, and equilibration time of 20-24 h has been used in each case. These samples may be used for hydrogen storage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-117

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Panella, M. Hirscher and S. Roth, Hydrogen adsorption in different carbon nanostructures, Carbon 43 (2005) 2209-2214.

DOI: 10.1016/j.carbon.2005.03.037

Google Scholar

[2] X. Hu, M. Trudeau and D.M. Antonelli, Hydrogen storage in microporous titanium oxides reduced by early transition metal organometallic sandwich compounds, Chem. Mater 19 (2007) 1388-1395.

DOI: 10.1021/cm062933l

Google Scholar

[3] T. Spassov, V. Rangelova, H. Chanev, S. Stoyanov and O. Petrov, Synthesis and hydrogen adsorption in Cu-based coordination framework materials, Scripta Materialia 58 (2008) 118-121.

DOI: 10.1016/j.scriptamat.2007.09.024

Google Scholar

[4] S. Proch, R. Kempe, C. Kern, A. Jess, L. Seyfarth and J. Senker, Pt@MOF-177: Synthesis, room-temperature hydrogen storage and oxidation catalysis, Chem. Eur. J. 14 (2008) 8204-8212.

DOI: 10.1002/chem.200801043

Google Scholar

[5] A.R. Biris, D. Lupu, E. Dervishi, Z. Li, V. Saini, D. Saini, S. Trigwell, M.K. Mazumder, R. Sharma and A.S. Biris, Hydrogen storage in carbon-based nanostructured materials hydrogen storage in carbon-based nanostructured materials, Particulat. Sci. Tech. 26 (2008).

DOI: 10.1080/02726350802084051

Google Scholar

[6] S.C. Amendola, S.L. Sharp-Goldman, M.S. Janjua, M.T. Kelly, P.J. Petillo and M. Binder, An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst, J. Power Sources 85 (2000) 186-189.

DOI: 10.1016/s0378-7753(99)00301-8

Google Scholar

[7] Z.P. Li, B.H. Liu, K. Arai, N. Morigazaki and S. Suda, Protide compounds in hydrogen storage systems, J. Alloys Compd. 356-357 (2003) 469-474.

DOI: 10.1016/s0925-8388(02)01241-0

Google Scholar

[8] L. Schlapbach and A. ZÜttel, Hydrogen-storage materials for mobile applications, Nature 414 (2001) 353-358.

DOI: 10.1038/35104634

Google Scholar

[9] C.W. Yoon and L.G. Sneddon: Ammonia triborane:  A promising new candidate for amineborane-based chemical hydrogen storage, J. Am. Chem. Soc. 128 (2006) 13992-13993.

DOI: 10.1021/ja064526g

Google Scholar

[10] J. Ferenc, Breakthroughs in hydrogen storage - formic acid as a sustainable storage material for hydrogen, Chem. Sus. Chem. 1 (2008) 805-808.

DOI: 10.1002/cssc.200800133

Google Scholar

[11] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[12] P. Chen, X. Wu, J. Lin and K.L. Tan, High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures, Science 285 (1999) 91-93.

DOI: 10.1126/science.285.5424.91

Google Scholar

[13] L. Ci, H. Zhu, B. Wei, C. Xu and D. Wu, Anneling amorphous carbon nanotubes for their application in hydrogen storage, Appl. Surf. Sci. 205 (2003) 39-43.

DOI: 10.1016/s0169-4332(02)00897-8

Google Scholar

[14] D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A. C, Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim and K.S. Novoselov, Control of graphene's properties by reversible hydrogenation: Evidence for graphane, Science 323 (2009).

DOI: 10.1126/science.1167130

Google Scholar

[15] S.J. Yang, J.Y. Choi, H.K. Chae, J.H. Cho, K.S. Nahm and C.R. Park, Preparation and enhanced hydrostability and hydrogen storage capacity of CNT@MOF-5 hybrid composite, Chem. Mater 21 (2009) 1893-1897.

DOI: 10.1021/cm803502y

Google Scholar

[16] N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O' Keeffe and O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks, Science 300 (2003) 1127-1129.

DOI: 10.1126/science.1083440

Google Scholar

[17] R. Chahine and T.K. Bose, Low-pressure adsorption storage of hydrogen, Int. J. Hydrogen Energy 19 (1994) 161-164.

DOI: 10.1016/0360-3199(94)90121-x

Google Scholar

[18] N.H.A. Hassan, A.R. Mohamed and S.H.S. Zein, Study of hydrogen storage by carbonaceous material at room temperature, Diamond and Related Materials 16 (2007) 1517-1523.

DOI: 10.1016/j.diamond.2006.12.042

Google Scholar