Synthesis and Thermoluminescent Properties of New ZnO Phosphors

Article Preview

Abstract:

In this work, results on the thermoluminescence dosimetry properties of beta particle irradiated ZnO obtained by thermal annealing of chemically synthesized ZnS are reported. ZnS powder was sintered at 950 °C during 24 h in air, in order to obtain pellet-shaped ZnO samples. The thermoluminiescence (TL) intensity of ZnO previously exposed to beta radiation increased as the dose increased in the 0.025-6.4 kGy interval studied. Characteristic glow curves exhibited two emission maxima at ~ 94 and ~ 341 °C. The dosimetric peak located at ~ 341 °C shifted towards lower temperatures as the dose increased, which indicates that second-order kinetic processes are involved in the thermoluminiescence emission. The dose response of ZnO showed a linear behaviour in the 0.025 Gy-0.8 kGy dose interval, which makes this material suitable and promising for medical, industrial and also space dosimetry applications. The thermoluminescence total signal faded down 48 % 6 h after irradiation and showed an asymptotic behaviour for longer times, due mainly to the ~ 341 °C stable and dosimetric glow peak.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-144

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Lupan, T. Pauporté, I.M. Tiginyanu, V.V. Ursaki, V. Şontea, L.K. Ono, B. Roldan Cuenya, L. Chow, Comparative study of hydrothermal treatment and thermal annealing effects on the properties of electrodeposited micro-columnar ZnO thin films, Thin Solid Films 519 (2011).

DOI: 10.1016/j.tsf.2011.05.072

Google Scholar

[2] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. -J. Cho, and H. Morkoç, A comprehensive review of ZnO materials and devices, Journal of Applied Physics 98 (2005) 041301.

DOI: 10.1063/1.1992666

Google Scholar

[3] C. Chen, B. Yu, P. Liu, J. F. Liu and L. Wan, Investigation of nano-sized ZnO particles fabricated by various synthesis routes, Journal of Ceramic Processing Research 12 (2011) 420–425.

Google Scholar

[4] V. A. Nikitenko, K. E. Tarkpea, I. V. Pykanov, and S. G. Stoyukhin, EPR and thermoluminescence in ZnO single crystals with anionic vacancies, Journal of Applied Spectroscopy 68 (2001) 502-507.

DOI: 10.1023/a:1011975028398

Google Scholar

[5] Walid A. Hadi, Michael S. Shur, Stephen K. O'Leary, Transient electron transport in the III-V compound semiconductors gallium arsenide and gallium nitride, J. Mater Sci: Mater Electron 23 (2012) 1-7.

DOI: 10.1007/s10854-012-0818-2

Google Scholar

[6] D. Millers, L. Grigorjeva, W. Łojkowski, T. Strachowski, Luminescence of ZnO nanopowders, Radiation Measurement 38 (2004) 589-591.

DOI: 10.1016/j.radmeas.2004.05.001

Google Scholar

[7] R. Chen, S.W.S. McKeever: Theory of Thermoluminescence and Related Phenomena, (World Scientific, Singapore, 1997).

Google Scholar

[8] V. A. Vorob'ev, Investigation of thermally stimulated luminescence of zinc oxide with low-voltage excitation, J. Opt. Technol. 72 (2005) 690–692.

DOI: 10.1364/jot.72.000690

Google Scholar

[9] Metin Bedir, Mustafa Öztas, A. Necmeddin Yazici, E. Vural Kafadar, Characterization of undoped and cu-doped ZnO thin films deposited on glass substrates by spray pyrolysis, Chinese Physics Letters 23 (2006) 939-942.

DOI: 10.1088/0256-307x/23/4/049

Google Scholar

[10] D. Diwan, S. Bhushan, S. P. Kathuria, Thermoluminescence of ZnO: Cu, La under UV and γ-ray irradiation, Crystal Research and Technology 19 (1984) 1265-1269.

DOI: 10.1002/crat.2170190922

Google Scholar

[11] D. De Muer and W. M. Van der Vorst, Thermoluminescence of ZnO powder, Physica 39 (1968) 123-132.

DOI: 10.1016/0031-8914(68)90053-0

Google Scholar

[12] D. Zwingel, Trapping and recombination processes in the thermoluminescence of Li-doped ZnO single crystals, Journal of Luminescence 5 (1972) 385-405.

DOI: 10.1016/0022-2313(72)90001-4

Google Scholar

[13] Mustafa Öztas, Characteristics of annealed ZnO: Cu nanoparticles prepared by spray pyrolysis, J. Mater Sci: Mater Electron 17 (2006) 937-941.

DOI: 10.1007/s10854-006-0047-7

Google Scholar

[14] A. Necmeddin Yazici, Mustafa Öztas, Metin Bedir, The thermoluminescence properties of copper doped ZnS nanophosphor, Optical Materials 29 (2007) 1091–1096.

DOI: 10.1016/j.optmat.2006.04.010

Google Scholar

[15] Po-Tsung Hsieh, Ying-Chung Chen, Kuo-Sheng Kao, Chih-Ming Wang, Structural and luminescent characteristics of non-stoichiometric ZnO films by various sputtering and annealing temperatures, Physica B 403 (2008) 178–183.

DOI: 10.1016/j.physb.2007.08.172

Google Scholar

[16] C. Cruz-Vázquez, R. Bernal, S.E. Burruel-Ibarra, H. Grijalva-Monteverde, M. Barboza-Flores, Thermoluminescence properties of new ZnO nanophosphors exposed to beta irradiation, Optical Materials 27 (2005) 1235–1239.

DOI: 10.1016/j.optmat.2004.11.016

Google Scholar

[17] C. Cruz-Vázquez, S.E. Burruel-Ibarra, H. Grijalva-Monteverde, V. Chernov, R. Bernal, Thermally and optically stimulated luminescence of new ZnO nanophosphors exposed to beta particle irradiation, Radiation Effects and Defects in Solids 162 (2007).

DOI: 10.1080/10420150701482089

Google Scholar

[18] C. Cruz-Vázquez, F. Rocha-Alonzo, S.E. Burruel-Ibarra, A new chemical bath deposition method for fabricating ZnS, Zn(OH)2, and ZnO thin films, and the optical and structural characterization of these materials, Appl. Phys. A: Mater. Sci. Process 79 (2004).

DOI: 10.1007/s00339-003-2097-5

Google Scholar

[19] Mayagoitia Barragán, José de Jesús: Tecnología e Ingeniería de Materiales. (Mc Graw Hill, 1a. edición, 2004).

Google Scholar

[20] P. L. Mangonon: The principles of materials selection for engineering design (Prentice Hall, US 1998).

Google Scholar