Multilayered Zircon-Alumina Components Fabricated by Slip Casting

Article Preview

Abstract:

In recent years there have been many studies attempting to increase the mechanical properties and reliability of structural ceramic materials; the forming methods used for this purpose are based on multi-layered materials to induce residual stress between interface layers. In this work were made monolithic and multi-layered materials manufactured by casting in plaster of Paris molds using zircon and alumina as raw materials, mechanical and microstructure characterizations were compared, founding that, indeed, the laminar designs can substantially improve the mechanical properties of manufactured materials by the compressive stress between the interface layers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

145-151

Citation:

Online since:

April 2013

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Tomaszewski, H. Weglarz, A. Wajler, M. Boniecki, D. Kalinski, Multilayer ceramic composites with high failure resistance, J. Eur. Cer. Soc. 27 (2007) 1373-1377.

DOI: 10.1016/j.jeurceramsoc.2006.04.030

Google Scholar

[2] R. Bermejo, C. Baudín, R. Moreno, L. Llanes, A. J. Sánchez-Herencia, Processing optimisation and fracture behaviour of layered ceramic composites with highly compressive layers, Comp. Sci. Tech. 67 (2007) 1930-(1938).

DOI: 10.1016/j.compscitech.2006.10.010

Google Scholar

[3] W. J. Clegg, K. Kendall, N. McN. Alford, T. W. Button and J. D. Birchall, A simple way to make tough ceramics, Nature 347 (1990) 455-456.

DOI: 10.1038/347455a0

Google Scholar

[4] J. Ma., Hongzhi Wang, Luqian Weng, G.E.B. Tan, Effect of porous interlayers on crack deflection in ceramic laminates, J. Eur. Ceram. Soc. 24 (2004) 825-831.

DOI: 10.1016/s0955-2219(03)00338-8

Google Scholar

[5] I. Nicolaidis, J. Gurauskis, C. Baudín, R. Moreno and J. Sánchez-Herencia, Forming of ceramic laminates comprising thin layers of a few particles, J. Am. Ceram. Soc. 91 (2008) 2124-2129.

DOI: 10.1111/j.1551-2916.2008.02441.x

Google Scholar

[6] A. J. Sánchez- Herencia, C. Baudín, Ceramic laminates with tailored residual stresses, Bol. Soc. Esp. Ceram. Vidr. 48 (2009) 311-320.

Google Scholar

[7] A.J. Sánchez-Herencia, L. M. Llanes Pitarch, C. Baudín, R. Bermejo, Tensiones residuales en cerámicas multicapa de Al2O3-ZrO2: naturaleza, evaluación y consecuencias sobre la integridad estructural, Bol. Soc. Esp. Ceram. Vidr. 45 (2006) 352-357.

DOI: 10.3989/cyv.2006.v45.i5.276

Google Scholar

[8] N.M. Rendtorff, L. B. Garrido, E. F. Aglietti, Zirconia toughening of mullite–zirconia–zircon composites obtained by direct sintering, Ceram. Int. 36 (2010) 781-788.

DOI: 10.1016/j.ceramint.2009.11.010

Google Scholar

[9] A. Kaiser, M. Lobert, R. Telle, Thermal stability of zircon (ZrSiO4), J. Eur. Ceram. Soc. 28 (2008) 2199-2211.

DOI: 10.1016/j.jeurceramsoc.2007.12.040

Google Scholar

[10] C. P. Wong, Rajas S. Bollampally, Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging, J. Appl. Pol. Sci. 74 (1999) 3396-3403.

DOI: 10.1002/(sici)1097-4628(19991227)74:14<3396::aid-app13>3.0.co;2-3

Google Scholar

[11] R. Torrecillas, J. S. Moya, Mecánica de fractura en materiales cerámicos frágiles. I: Principios fundamentales, Bol. Soc. Esp. Ceram. Vidr. 27 (1988) 123-135.

Google Scholar

[12] S. Bueno, C. Baudín, Mechanical behaviour of structural ceramics, Bol. Soc. Esp. Ceram. Vidr. 46 (2007) 103-118.

DOI: 10.3989/cyv.2007.v46.i3.241

Google Scholar

[13] T.T. Shih, J. Opoku, Application of fracture mechanics to ceramic materials - A state-of-the-art review, Eng. Fract. Mech. 12 (1979) 479-498.

DOI: 10.1016/0013-7944(79)90091-2

Google Scholar