Corrosion Fatigue Behavior of Flexible Pipe Tensile Armor Wires in a CO2 Environment

Article Preview

Abstract:

The new offshore areas being explored in Brazil presents higher concentration of CO2 compared with most existing offshore fields. The presence of these more aggressive environments has led to the development of new technologies. Due to the construction characteristics of flexible pipes, any increase in CO2 concentration in the conveyed fluid will, in turn, increase the CO2 concentration in the pipe annulus, subjecting the metallic armor layers to a more aggressive environment. Evaluation of the CO2 effects of corrosion fatigue behavior in tensile armor wires is therefore of vital importance. A comprehensive corrosion fatigue experiment for tensile armor wires in environments up to 10 bar of CO2, has been established and the experimental results have shown a fatigue life reduction in the tensile amour wires due to higher levels of CO2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-82

Citation:

Online since:

June 2013

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. P. Santos: Avaliação dos Efeitos da Pressão Parcial de CO2 no Processo de Corrosão-Fadiga em Armaduras de Tração de Dutos Flexíveis, Master Degree (in Portuguese), Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (2011).

DOI: 10.5753/ersirj.2018.4661

Google Scholar

[2] F. P. Santos, F. Pires, R. Clements, ; J. Clevelario, T. Sheldrake, L. F. G. Souza, P. P. Kenedi: Evaluation of the Effects of CO2 Partial Pressure on the Corrosion Fatigue Behavior of Flexible Pipe Tensile Armor Wire, Offshore Technology Conference - OTC 2011, Houston – Texas (2011).

DOI: 10.4043/21262-ms

Google Scholar

[3] S. Berge, N. K. Langhelle and T. G. Eggen: Environmental Effects on Fatigue Strength of Armor Wire for Flexible Risers, OMAE2008-57132, Portugal (2008).

Google Scholar

[4] S. Berge, E. Bendiksen, J. Gudme, K. Langhelle and R. Clements, in: Corrosion Fatigue Testing of Flexible Riser Armor Procedures for Testing and Assessment of Design Criteria, OMAE2003-37327, Mexico (2003).

DOI: 10.1115/omae2003-37327

Google Scholar

[5] P. Woollin and R. Clements: Fatigue Crack Propagation in C-Mn Steel Haz Microstructures Tested in Air and Seawater, OMAE1998-2601, Portugal (1998).

Google Scholar

[6] M. Horstmann, J. K. Gregory and K. H. Schwalbe: Int. J. Fatigue Vol. 17 n. 4 (1995), pp.293-299.

Google Scholar

[7] ASTM Standard E739, in: Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain – Life (ε-N) Fatigue Data (2004).

DOI: 10.1520/stp29332s

Google Scholar

[8] P. S. Veers, in: Fatigue Strength Prediction and Analysis, ASM Handbook, Fatigue and Fracture, Vol. 19, Section- Fatigue Strength Prediction and Analysis, ISBN 0-87170-385-8, ASM International (1996).

DOI: 10.31399/asm.hb.v19.9781627081931

Google Scholar