Evolution and Prediction of Texture in Commercially Pure Warm Rolled Titanium

Article Preview

Abstract:

Titanium alloys are used in a wide variety of aerospace, energy, industrial and biomedical applications, among other reasons, due to their superior properties. These properties are highly dependent of materials microstructure, i.e. texture, dislocation density and slip system activity. Therefore, in order to be able to design materials with certain properties it is crucial an understanding of the deformation process in terms of microstructural parameters. Microstructure evolution in warm rolled commercially pure titanium was investigated by means of X-ray diffraction and modeled with a crystal plasticity self-consistent scheme. Texture measurements and peak profile analysis were used to characterize the deformation texture and evaluate the relative activity of the various slips systems activated during the deformation process. The peak profile analysis data and the self-consistent predictions of texture evolution showed a good agreement with the experimental deformation texture evolution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-105

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.J. Phillipe, M. Serghat and P. van Houtte: Acta Metallurgica et Materiallia Vol. 43 (1995), pp.1619-1630.

Google Scholar

[2] S. Zaefferer: Materials Science and Engineering Vol.344 (2003), pp.20-30.

Google Scholar

[3] K.E. Crosby, R.A. Mirshams and S.S. Pang: Journal of Materials Science Vol. 35 (2000), pp.3189-3195.

Google Scholar

[4] A. Fjeldly and H.J. Roven: Acta Materiallia Vol.44 (1996), pp.3497-3504.

Google Scholar

[5] Z.S. Zhu, R.Y. Liu, M.G. Yan and C.X. Cao, Journal of Materials Science Vol.32 (1997), p.5163.

Google Scholar

[6] J.S Kallend, U.F. Kocks, A.D. Rollett and H.R. Wenk: Materials Science and Engineering A Vol. 132 (1991), pp.1-11.

DOI: 10.1016/0921-5093(91)90355-q

Google Scholar

[7] A.R. Stokes and A.J.C. Wilson: I. Proc. Phys. Soc. London Vol. 56 (1994), p.174.

Google Scholar

[8] G. Ribárik, T. Ungár and J. Gubicza: Journal of Applied Crystallography Vol. 34 (2001), pp.669-676.

Google Scholar

[9] I.C. Dragomir and T. Ungar: Journal of Applied Crystallography Vol. 35B (2002), pp.556-564.

Google Scholar

[10] I.C. Dragomir and T. Ungar: Powder Diffraction Journal Vol.17A (2002), pp.104-111.

Google Scholar

[11] A. Molinari, G.R. Canova and S. Ahzi: Acta Metallurgica Vol. 35(1987), pp.2983-2994.

DOI: 10.1016/0001-6160(87)90297-5

Google Scholar

[12] C. N. Tomé, R. A. Lebensohn and U. F. Kocks: Acta Metallurgica et Materialia Vol. 39 (1991), pp.2667-2680.

DOI: 10.1016/0956-7151(91)90083-d

Google Scholar

[13] S. Nemat-Nasser, W. G. Guo and J.Y. Cheng: Acta Materialia Vol. 47 (1999), pp.3705-3720.

DOI: 10.1016/s1359-6454(99)00203-7

Google Scholar

[14] S.E. Schoenfeld, S. Ahzi and R.J. Asaro: J. Mech. Phys. Solids Vol. 43 (1995), pp.415-446.

Google Scholar

[16] J.J. Fundenberger, M.J. Phillippe, F. Wagner and C. Esling: Acta Materiallia Vol.45 (1997), pp.4041-4055.

Google Scholar

[17] M.G. Glavicic, A.A. Salem, S.L. Semiatin: Acta Materialia Vol. 52 (2004), pp.647-655.

Google Scholar

[18] H. Inagaki: Zeitschrift Fur Metallkunde Vol. 4 (1990), p.282.

Google Scholar

[19] I.P. Jones and W.B. Hutchinson: Acta Metalurgica Vol. 29 (1981), pp.951-968.

Google Scholar

[20] S.G. Song and I.I.I.G.T. Gray: Acta Metallurgica et Materialia Vol. 43 (1995), pp.2339-2350.

Google Scholar

[21] I. Dragomir-Cernatescu, D.S. Li, G.A. Castello-Branco, H. Garmestani and R.L. Snyder: Scripta Materiallia Vol. 55 (2005), pp.66-74.

Google Scholar