Physical Simulation of Thermomechanical Processing of Multiphase Mn-Al Steels with Retained Austenite

Article Preview

Abstract:

The thermomechanical processing of certain AHSS still represents a challenge due to the lack of complete data on their hot deformation behaviour. Therefore, the aim of this study was to provide data on the hot-working behaviour of four model steels of the type 0.17C-3Mn-1.5Al and 0.17C-5Mn-1.5Al with or without Nb microaddition. The paper presents the results of hot strip rolling simulated by multi-step compression tests using a Gleeble simulator. Analysis of microstructural features of steels with focusing on Mn and Nb contents was carried out using X-ray, LM (light microscopy) and SEM (scanning electron microscopy). It has been shown that the applied deformation schedule allows to develop very fine-grained transformation products of supercooled austenite and controlled cooling with isothermal holding at 400°C enables to retain from 13 to 18% of retained austenite with the blocky or lath-type morphology. Mn alloying in the amount of 3 to 5 wt.% does not affect hot deformation resistance contrary to Nb microaddition, which raises flow stress levels. Influences of Mn and Nb on the retained austenite content and its carbon content are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-82

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.J. DeArdo, J.E. Garcia, M. Hua and C.I. Garcia: Mater. Sci. Forum Vol. 500-501 (2005), p.27.

Google Scholar

[2] E. Hadasik, R. Kuziak, R. Kawalla, M. Adamczyk and M. Pietrzyk: Steel Res. Int. Vol. 77 (2006), p.927.

DOI: 10.1002/srin.200606483

Google Scholar

[3] P. Suwanpinij, U. Prahl, W. Bleck and R. Kawalla: Arch. Civ. Mech. Eng. Vol. 12 (2012), p.305.

Google Scholar

[4] I.B. Timokhina, P.D. Hodgson and E.V. Pereloma: Metall. Mater. Trans. A Vol. 35A (2004), p.2231.

Google Scholar

[5] D. Krizan and B.C. De Cooman: Steel Res. Int. Vol. 79 (2008), p.513.

Google Scholar

[6] K. Sugimoto, K. Nakano, S.M. Song and T. Kashima: ISIJ Int. Vol. 42 (2002), p.450.

Google Scholar

[7] L.A. Dobrzański, A. Grajcar and W. Borek: Mater. Sci. Forum Vol. 638-642 (2010), p.3224.

Google Scholar

[8] A.S. Hamada, M.C. Somani and L.P. Karjalainen: ISIJ Int. Vol. 47 (2007), p.907.

Google Scholar

[9] A. Grajcar and S. Lesz: Mater. Sci. Forum Vol. 706-709 (2012), p.2124.

Google Scholar

[10] A. Grajcar and R. Kuziak: Adv. Sci. Lett. Vol. 15 (2012), p.332.

Google Scholar

[11] P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer and D.K. Matlock: Metall. Mater. Trans. A Vol. 42A (2011), p.3691.

Google Scholar

[12] S.J. Kim: Mater. Sci. Forum Vol. 638-642 (2010), p.3313.

Google Scholar

[13] A. Grajcar, R. Kuziak and W. Zalecki: Arch. Civ. Mech. Eng. Vol. 12 (2012), p.334.

Google Scholar

[14] D. Liu, F. Fazeli, M. Militzer and W.J. Poole: Metall. Mater. Trans. A Vol. 38A (2007), p.894.

Google Scholar

[15] F. Fazeli and M. Militzer: ISIJ Int. Vol. 52 (2012), p.650.

Google Scholar

[16] D.J. Dyson and B. Holmes: J. Iron Steel Inst. Vol. 5 (1970), p.469.

Google Scholar

[17] R.M. Skolly and E.I. Poliak: Mater. Sci. Forum Vol. 500-501 (2005), p.187.

Google Scholar

[18] F. Siciliano and E.I. Poliak: Mater. Sci. Forum Vol. 500-501 (2005), p.195.

Google Scholar

[19] E.I. Poliak and F. Siciliano: MS&T'2004 Conf. Proc. (2004), Pittsburgh, USA, p.605.

Google Scholar

[20] S. Zajac, V. Schwinn and K.H. Tacke: Mater. Sci. Forum Vol. 500-501 (2005), p.387.

Google Scholar

[21] S. Van der Zwaag, L. Zhao, S.O. Kruijver and J. Sietsma: ISIJ Int. Vol. 42 (2002), p.1565.

Google Scholar