Focused Ion Beam Milling and Imaging: An Advanced Method to Detect Fine Inclusions in Cast Aluminium Alloys

Article Preview

Abstract:

The combined function of a FIB milling technique utilising beam sizes of under 10 nm coupled with a micromanipulator and FIB imaging enables analysis of the microstructure of samples and fabrication of TEM thin foils. This is accomplished at desired locations in the same chamber without moving the sample or any mechanical sawing and thinning. In this study, the FIB milling and imaging technique was used to examine the microstructure and chemical composition of fine inclusions in an Al alloy, which are generally difficult to detect by conventional optical and/or scanning electron microscopy due to their size and volume fraction. Examples are presented of fine particles in cast commercial purity aluminium and a melt conditioned AA 5754 alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

150-154

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Impey, D. Stephenson, J. Nicholls, The influence of surface preparation and pretreatments on the oxidation of liquid aluminium and aluminium-magnesium alloys, in: S.B. Newcomb, M.J. Bennett (Eds.), Microscopy of Oxidation 2: Second International Conference on the Microscopy of Oxidation, The Institue of Materials, Cambridge, 1993, pp.323-337.

DOI: 10.1201/9781003422020-31

Google Scholar

[2] Z. Fan, Y. Wang, M. Xia, S. Arumuganathar, Enhanced heterogeneous nucleation in AZ91D alloy by intensive melt shearing, Acta Mater. 57 (2009) 4891-4901.

DOI: 10.1016/j.actamat.2009.06.052

Google Scholar

[3] Y. Wang, Z. Fan, X. Zhou, G. Thompson, Characterisation of magnesium oxide and its interface with α-Mg in Mg–Al-based alloys, Phil. Mag. Letts. 91 (2011) 516-529.

DOI: 10.1080/09500839.2011.591744

Google Scholar

[4] K. Kim, M. Watanabe, S. Kuroda, N. Kawano, Observation of high resolution microstructures in thermal sprayed coatings and single deposited splats using ion beam milling, Mater. Trans. 52 (2011) 439-446.

DOI: 10.2320/matertrans.t-m2010826

Google Scholar

[5] T. Shih, I. Chen, Decomposition and reaction of thermal-formed alumina in aluminum alloy castings, Mater. Trans. 46 (2005) 1868-1876.

DOI: 10.2320/matertrans.46.1868

Google Scholar

[6] L. Mondolfo, Aluminum Alloys: Structure and Properties, Butter Worths, London, 1976.

Google Scholar

[7] W. Thiele, The oxidation of melts of aluminum and aluminum alloys, Aluminum 38 (1962) 707-715.

Google Scholar

[8] K. Kim, M. Watanabe, K. Mitsuishi, K. Iakoubovskii, S. Kuroda, Impact bonding and rebounding between kinetically sprayed titanium particle and steel substrate revealed by high-resolution electron microscopy, J. Phys. D: Appl. Phys. 42 (2009) 065304.

DOI: 10.1088/0022-3727/42/6/065304

Google Scholar

[9] A. Lohar, B. Mondal, S. Panigrahi, Influence of cooling rate on the microstructure and ageing behavior of as-cast Al–Sc–Zr alloy, J. Mater. Process Tech. 210 (2010) 2135-2141.

DOI: 10.1016/j.jmatprotec.2010.07.035

Google Scholar

[10] N. Pourkia, M. Emamy, H. Farhangi, S. Ebrahimi, The effect of Ti and Zr elements and cooling rate on the microstructure and tensile properties of a new developed super high-strength aluminum alloy, Mat. Sci. Eng. A 527 (2010) 5318-5325.

DOI: 10.1016/j.msea.2010.05.009

Google Scholar

[11] S. Kumar, N. Hari Babu, G. Scamans, Z. Fan, Microstructural evaluation of melt conditioned twin roll cast Al-Mg alloy, Mat. Sci. Tech. 27 (2011) 1833-1839.

DOI: 10.1179/1743284710y.0000000044

Google Scholar

[12] M. Verweftf, On the precipiation of magnesium silicide in irradiated aluminium-magnesium alloys, Acta Mater. 48 (2000) 1097-1104.

DOI: 10.1016/s1359-6454(99)00417-6

Google Scholar