The Strength and Ductility of 5483 Aluminium Alloy Processed by Various SPD Methods

Article Preview

Abstract:

Grain size refinement is an efficient way to improve mechanical strength and thus make light metals even lighter in terms of specific strength. However, the strength improvement is at the expense of ductility. Therefore, a better understanding of microstructural factors influencing both parameters is of prime importance for further development of ultrafine grained materials. In this work, we report results obtained for 5483 aluminium alloy which was subjected to several severe plastic deformation (SPD) methods, i.e. equal channel angular pressing (ECAP), Hydrostatic Extrusion (HE) and the combination of the two. Detailed microstructural analysis revealed significant difference in the grain size and grain boundary characteristics between samples obtained following different routes. It was found that although the grain size is a prime microstructural parameter determining mechanical strength, second order factors such as grain size distribution and distribution of grain boundary misorientation angles also play a significant role.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

423-428

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.-D. Woo, S.-W. Kim, T.P. Lou, Mat. Sci. Eng., A 334 (2002) 157-261.

Google Scholar

[2] M. Lewandowska, K.J. Kurzydłowski, Mater. Charact.  55 (2005) 395-401.

Google Scholar

[3] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, CRIP Annals – Manuf. Tech. 57 (2008) 716-735.

DOI: 10.1016/j.cirp.2008.09.005

Google Scholar

[4] K.J. Kurzydlowski, Mater. Sci. Forum 503-504 (2006) 341-348.

Google Scholar

[5] M. Lewandowska, Solid State Phenomena 114 (2006) 109-116.

Google Scholar

[6] M. Alizadeh, M.H. Paydar, J. Alloys Compd. 492 (2010) 231-235.

Google Scholar

[7] H. Uzun, C. D. Donne, A. Argagnotto, T. Ghidini, C. Gambaro, Mater. Design 26 (2005) 41-46.

Google Scholar

[8] A. Loucif, R.B. Figueiredo, T. Baudin, F. Brisset, R. Chemam, T.G. Langdon, Mat. Sci. Eng. A 532 (2012) 139-145.

Google Scholar

[9] Y.S. Sato, Y. Kurihara, S.H.C. Park, H. Kokawa, N. Tsuji, Scripta Mater. 50 (2004) 57.

Google Scholar

[10] P. Zhilyaev, G.V. Nurislamova, S. Suriñach, M.D. Barò, T.G. Langdon, Mater. Phys. Mech. 5 (2002) 23.

Google Scholar

[11] N.D. Stepanov, A.V. Kuznetsov, G.A. Salishchev, G.I. Raab, R.Z. Valiev Mat. Sci. Eng. A 554 (2012) 105-115.

Google Scholar

[12] P. Bazarnik, M. Lewandowska, M. Andrzejczuk, K.J. Kurzydlowski, Mat. Sci. Eng. A 556 (2012) 134-139.

Google Scholar

[13] B. Zhu, R.J. Asaro, P. Krysl, K. Zhang, J.R. Weertman, Acta Mater. 54 (2006) 3307-3320.

Google Scholar

[14] H.Y. Chao, Y. Yang, X. Wang, E.D. Wang, Mat. Sci. Eng. A 528 (2011) 3428-3434.

Google Scholar

[15] W.A. Swiatnicki, M.W. Grabski, Mat. Sci. Eng. 100 (1988) 93-100.

Google Scholar

[16] N. Hansen, Scripta Mater. 51 (2004) 801-806.

Google Scholar

[17] T.D. Topping, T. Hu, K. Manigandan, T.S. Srivatsan, E.J. Lavernia, Philos. Mag. (2012) 1-23.

Google Scholar

[18] A.P. Newbery, B. Ahn, T.D. Topping, P.S. Pao, S.R. Nutt, E.J. Lavernia, J. Mater. Process. Technol. 203 (2008) 37-45.

Google Scholar

[19] Z. Horita, T. Fujinami, M. Nemoto, T.G. Langdon, J. Mater. Process. Technol. (2001) 288-292.

Google Scholar

[20] T.Hirata, T. Oguri, H. Hagino, T. Tanaka, S. W. Chung, Y. Takigawa, K. Higashi, Mat. Sci. Eng. A 456 (2007) 344-349.

Google Scholar