Surface Reactivity of Magnesium Alloys in Solid and Liquid States

Article Preview

Abstract:

The major factors, controlling surface degradation of magnesium alloys in oxygen‑containing atmospheres at temperatures of solid and liquid states, are reviewed. While thin oxide films, formed during initial stages, exhibit some protective behaviour, thick scales grown at high temperatures do not block the outward diffusion of metal ions, leading to non-protective oxidation. The high vapour pressure of magnesium increases surface degradation and reduces effectiveness of inert atmospheres. Thus, both the solid and liquid states rely on the formation of compact oxide layers on the metallic surface, suppressing evaporation and oxidation. The role of protective atmospheres and alloy chemistry in reducing surface reactivity is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

698-702

Citation:

Online since:

July 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Czerwinski, Journal of The Minerals, Metals and Materials Society 64 (2012) 1447-1483.

Google Scholar

[2] F. Czerwinski, Acta Mater. 50 (2002) 2639-2654.

Google Scholar

[3] W. Smeltzer, J. Electrochem. Soc. 105 (1958) 67-71.

Google Scholar

[4] L. Hirsch, T. Shankland, J. Geophys. Res. 96 (1991) 385-403.

Google Scholar

[5] D. Alfe, M. Gillan, Phys. Rev. B 71 (2005) 220101.

Google Scholar

[6] J. Van Orman, K. Crispin, Review in Mineralogy & Geochemistry 71 (2010) 725-825.

Google Scholar

[7] F. Kroger, The Chemistry of Imperfect Crystals, Amsterdam: North Holland Publishing Co., 1964.

Google Scholar

[8] F. Czerwinski, Corros. Sci. 46 (2005) 377-386.

Google Scholar

[9] K. Aerstad, Protective Films on Molten Magnesium, Ph.D. Thesis: Norwegian University of Science and Technology, 2004.

Google Scholar

[10] S. Cashion, N. Rickettes, P. Hayes, J. Light Metals 2 (2002) 37-42.

Google Scholar

[11] H. Dorsan, in: Magnesium Technology, TMS, 2000, pp.99-106.

Google Scholar

[12] S. Bak, D. Lee, Trans. Nonferrous Met. Soc. China, 19 (2009) 871-874.

Google Scholar

[13] X. Wang, X. Zhang, G. Wu, S. Yao, Y. Lai, J. Alloys Compd. 456 (2008) 384-389.

Google Scholar

[14] F. Czerwinski, W. Smeltzer, J. Electrochem. Soc. 140 (1993) 2606-2616.

Google Scholar