Influence of Gap Length on Collision Angle and Collision Point Velocity of Magnetic Pressure Seam Welding

Article Preview

Abstract:

Magnetic pressure seam welding is a collision welding process, similar to explosive welding, utilizing electromagnetic force as the acceleration mechanism. True metallic bonding is achieved at the mating interface if contact takes place above an appropriate collision point velocity and collision angle. This paper deals with dynamic deformation process on magnetic pressure seam welding of aluminum sheets. Numerical analysis of the dynamic deformation process of the metal sheets is made by a finite element method. In this analysis, the metal sheets (100 mm width, 1 mm thickness) are assumed to be composed of plane-strain quadrilateral elements. The result shows that when the gap length becomes narrow, collision point velocity was decreased early. When the gap length becomes narrow, collision angle was increased slowly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

166-170

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Aizawa, K. Okagawa, M. Yoshizawa and N. Henmi: Proc. of 4th Int. Symp. on Impact Engineering (2001) 827-832.

Google Scholar

[2] T. Aizawa: J. of Japan Inst. of Light Metals, 54 (2004) 153-158.

Google Scholar

[3] K. Okagawa and T. Aizawa: J. Jpn. Soc. Technol. Plast., 48 (2007) 323-327.

Google Scholar

[4] M. Watanabe, S. Kumai and T. Aizawa: Mater. Sci. Forum, 519-521 (2006) 1145-1150.

Google Scholar

[5] K. J. Lee, S. Kumai, T. Arai and T. Aizawa: Mater. Sci. Eng. A, 471 (2007) 95-101.

Google Scholar

[6] T. Aizawa, M. Kashani and K. Okagawa: Weld. J., 86 (2007) 119s-124s.

Google Scholar

[7] M. Watanabe and S. Kumai: Mater. Trans., 50 (2009) 2035-(2042).

Google Scholar

[8] S.D. Kore, P.P. Date and S.V. Kulkarni: Int. J. of Impact Eng., 34 (2007) 1327-1341.

Google Scholar

[9] S.D. Kore, P. Dhanesh, S.V. Kulkarni and P.P. Date: Int. J. of Appl. Electromagnetics and Mechanics, 32 (2010) 1-9.

Google Scholar

[10] Y. Zhang, S.S. Babu, P. Zhang, E.A. Kenik and G.S. Daehn: Sci. Technol. Weld. Joining, 13 (2008) 467-471.

Google Scholar

[11] T. Aizawa: Welding International, 18 (2004) 868-872.

Google Scholar

[12] H. Serizawa, I. Shibahara, S. Rashed and H. Murakawa: Mater. Sci. Forum, 638-642 (2010) 2166-2171.

Google Scholar

[13] H. Serizawa, I. Shibahara, S. Rashed and H. Murakawa : Trans. of JWRI, 38 (2009) 63-68.

Google Scholar

[14] T. Onzawa, Z. Murakami: High Energy Rate Forming, CORONA Publishing Inc., Tokyo, (1993) pp.68-76.

Google Scholar

[15] K. Okagawa and T. Aizawa: J. Jpn. Soc. Technol. Plast., 47 (2006) 632-636.

Google Scholar

[16] M. Watanabe, S. Kumai, K. Okagawa, T. Aizawa: Pre-Prints of the 82nd National Meeting of JWS, (2008) 122-123.

Google Scholar

[17] M. Watanabe and S. Kumai: Mater. Trans., 50 (2009) 286-292.

Google Scholar

[18] M. Chizari, S. T. S. Al Hassani and L. M. Barrett: J. Mater. Process. Technol., 198 (2008) 213-219.

Google Scholar

[19] S. Kakizaki, M. Watanabe and S. Kumai: Proc. of the 12th Int. Conf. on Aluminium Alloys (2010) 945-949.

Google Scholar