[1]
J. E. Mahan, A. Vantomme, G. Langouche, Semiconducting Mg2Si thin films prepared by molecular-beam epitaxy, Phys. Rev. B 54 (1996) 16965-16971.
DOI: 10.1103/physrevb.54.16965
Google Scholar
[2]
F. Yu et al., A study of the phase transitions, electronic structures and optical properties of Mg2Si under high pressure, Solid State Commun. 150 (2010) 620-624.
DOI: 10.1016/j.ssc.2009.12.031
Google Scholar
[3]
Y. Noda et al., Preparation and Thermoelectric Properties of Mg2Si1-xGex(x=0. 0-0. 4) Solid Solution Semiconductors, Mater. Trans. JIM 33 (1992) 845-850.
Google Scholar
[4]
J. Tani, H. Kido, Lattice dynamics of Mg2Si and Mg2Ge compounds from first-principles calculations, Comput. Mater. Sci. 42 (2008) 531-536.
DOI: 10.1016/j.commatsci.2007.08.018
Google Scholar
[5]
S. Ganeshan et al., Elastic constants of binary Mg compounds from first-principles calculations, Intermetallics 17 (2009) 313-318.
DOI: 10.1016/j.intermet.2008.11.005
Google Scholar
[6]
M. Ioannou et al., Fabrication of nanocrystalline Mg2Si via ball milling process: Structural studies, Powder Technol. 217 (2012) 523-532.
DOI: 10.1016/j.powtec.2011.11.014
Google Scholar
[7]
L. D. Hicks, M. S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B 47 (1993) 16631-16634.
DOI: 10.1103/physrevb.47.16631
Google Scholar
[8]
R. Venkatasubramanian et al., Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413 (2001) 597-602.
DOI: 10.1038/35098012
Google Scholar
[9]
L. Wang et al., Fabrication and mechanical properties of bulk nanocrystalline intermetallic Mg2Si, Mater. Sci. Eng. A 459 (2007) 216-222.
Google Scholar
[10]
J. M. Munoz-Palos, M. C. Cristina, P. Adeva, Synthesis of Mg2Si powder by mechanical alloying and its consolidation, Mater. Trans. JIM 37 (1996) 1602-1606.
DOI: 10.2320/matertrans1989.37.1602
Google Scholar
[11]
G. H. Li, Q. P. Kong, Processing and thermal stability of nano-Mg2Si intermetallic compound, Scripta Metall. Mater. 32 (1995) 1435-1440.
DOI: 10.1016/0956-716x(95)00184-w
Google Scholar
[12]
L. Wang et al., Thermal stability and grain growth behavior of nanocrystalline Mg2Si, Mater. Sci. Eng. A 434 (2006) 166-170.
Google Scholar
[13]
K. Kondo, S. Kukino, H. Hirai, Shock-compaction of nano-sized diamond powder, as examined by microstructural analysis, J. Am. Ceram. Soc. 79 (1996) 97-101.
DOI: 10.1111/j.1151-2916.1996.tb07885.x
Google Scholar
[14]
C. D. Dai, D. E. Eakins, N. N. Thadhani, Dynamic densification behavior of nanoiron powders under shock compression, J. Appl. Phys. 103 (2008) 093503 1-12.
DOI: 10.1063/1.2908209
Google Scholar
[15]
H. Kishimura, H. Matsumoto, Fabrication of Ti–Cu–Ni–Al amorphous alloys by mechanical alloying and mechanical milling, J. Alloys Compd. 509 (2011) 4386-4389.
DOI: 10.1016/j.jallcom.2010.12.181
Google Scholar
[16]
H. Kishimura, H. Matsumoto, Characterization of Shock-Recovered BaSi2 Powder, Jpn. J. Appl. Phys. 50 (2011) 125805 1-5.
DOI: 10.1143/jjap.50.125805
Google Scholar
[17]
Y. S. Raptis et al., Anharmonic effects in Mg2X (X=Si, Ge, Sn) compounds studied by Raman spectroscopy, J. Phys. 48 (1987) 239-245.
DOI: 10.1051/jphys:01987004802023900
Google Scholar
[18]
J. Hao et al., In situ X-ray observation of phase transitions in Mg2Si under high pressure, Solid State Commun. 149 (2009) 689-692.
Google Scholar
[19]
B. Yu et al., Structural, electronic, elastic and thermal properties of Mg2Si, J. Phys. Chem. Solids 71 (2010) 758-763.
Google Scholar
[20]
H. Wang et al., Thermodynamic properties of Mg2Si and Mg2Ge investigated by first principles method, J. Alloys Compd. 499 (2010) 68-74.
DOI: 10.1016/j.jallcom.2010.01.134
Google Scholar
[21]
S. Onari, M. Cardona, Resonant Raman scattering in the II-IV semiconductors Mg2Si, Mg2Ge, and Mg2Sn, Phys. Rev. B 14 (1976) 3520-3531.
Google Scholar
[22]
C. Meiera et al., Raman properties of silicon nanoparticles, Physica E 32 (2006) 155-158.
Google Scholar
[23]
E. Anastassakis et al., Effect of static uniaxial stress on the Raman spectrum of silicon, Solid State Commun. 8 (1970) 133-138.
DOI: 10.1016/0038-1098(70)90588-0
Google Scholar