Consolidation of Mg2Si Powder Using Shockwave Generated by Projectile Impact

Article Preview

Abstract:

A series of shock compaction experiments on as-received and ball-milled Mg2Si powder were conducted. The crystalline size in the shocked compacts obtained from the ball-milled powder was equivalent to that of the compacts obtained from the as-received powder. Although the shock pressure was higher than the phase transition pressure, the crystal structure reverted to its original structure under ambient conditions. For the shocked compact obtained from the ball-milled powder, a MgO peak appeared in the X-ray diffraction pattern.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-182

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. E. Mahan, A. Vantomme, G. Langouche, Semiconducting Mg2Si thin films prepared by molecular-beam epitaxy, Phys. Rev. B 54 (1996) 16965-16971.

DOI: 10.1103/physrevb.54.16965

Google Scholar

[2] F. Yu et al., A study of the phase transitions, electronic structures and optical properties of Mg2Si under high pressure, Solid State Commun. 150 (2010) 620-624.

DOI: 10.1016/j.ssc.2009.12.031

Google Scholar

[3] Y. Noda et al., Preparation and Thermoelectric Properties of Mg2Si1-xGex(x=0. 0-0. 4) Solid Solution Semiconductors, Mater. Trans. JIM 33 (1992) 845-850.

Google Scholar

[4] J. Tani, H. Kido, Lattice dynamics of Mg2Si and Mg2Ge compounds from first-principles calculations, Comput. Mater. Sci. 42 (2008) 531-536.

DOI: 10.1016/j.commatsci.2007.08.018

Google Scholar

[5] S. Ganeshan et al., Elastic constants of binary Mg compounds from first-principles calculations, Intermetallics 17 (2009) 313-318.

DOI: 10.1016/j.intermet.2008.11.005

Google Scholar

[6] M. Ioannou et al., Fabrication of nanocrystalline Mg2Si via ball milling process: Structural studies, Powder Technol. 217 (2012) 523-532.

DOI: 10.1016/j.powtec.2011.11.014

Google Scholar

[7] L. D. Hicks, M. S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B 47 (1993) 16631-16634.

DOI: 10.1103/physrevb.47.16631

Google Scholar

[8] R. Venkatasubramanian et al., Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413 (2001) 597-602.

DOI: 10.1038/35098012

Google Scholar

[9] L. Wang et al., Fabrication and mechanical properties of bulk nanocrystalline intermetallic Mg2Si, Mater. Sci. Eng. A 459 (2007) 216-222.

Google Scholar

[10] J. M. Munoz-Palos, M. C. Cristina, P. Adeva, Synthesis of Mg2Si powder by mechanical alloying and its consolidation, Mater. Trans. JIM 37 (1996) 1602-1606.

DOI: 10.2320/matertrans1989.37.1602

Google Scholar

[11] G. H. Li, Q. P. Kong, Processing and thermal stability of nano-Mg2Si intermetallic compound, Scripta Metall. Mater. 32 (1995) 1435-1440.

DOI: 10.1016/0956-716x(95)00184-w

Google Scholar

[12] L. Wang et al., Thermal stability and grain growth behavior of nanocrystalline Mg2Si, Mater. Sci. Eng. A 434 (2006) 166-170.

Google Scholar

[13] K. Kondo, S. Kukino, H. Hirai, Shock-compaction of nano-sized diamond powder, as examined by microstructural analysis, J. Am. Ceram. Soc. 79 (1996) 97-101.

DOI: 10.1111/j.1151-2916.1996.tb07885.x

Google Scholar

[14] C. D. Dai, D. E. Eakins, N. N. Thadhani, Dynamic densification behavior of nanoiron powders under shock compression, J. Appl. Phys. 103 (2008) 093503 1-12.

DOI: 10.1063/1.2908209

Google Scholar

[15] H. Kishimura, H. Matsumoto, Fabrication of Ti–Cu–Ni–Al amorphous alloys by mechanical alloying and mechanical milling, J. Alloys Compd. 509 (2011) 4386-4389.

DOI: 10.1016/j.jallcom.2010.12.181

Google Scholar

[16] H. Kishimura, H. Matsumoto, Characterization of Shock-Recovered BaSi2 Powder, Jpn. J. Appl. Phys. 50 (2011) 125805 1-5.

DOI: 10.1143/jjap.50.125805

Google Scholar

[17] Y. S. Raptis et al., Anharmonic effects in Mg2X (X=Si, Ge, Sn) compounds studied by Raman spectroscopy, J. Phys. 48 (1987) 239-245.

DOI: 10.1051/jphys:01987004802023900

Google Scholar

[18] J. Hao et al., In situ X-ray observation of phase transitions in Mg2Si under high pressure, Solid State Commun. 149 (2009) 689-692.

Google Scholar

[19] B. Yu et al., Structural, electronic, elastic and thermal properties of Mg2Si, J. Phys. Chem. Solids 71 (2010) 758-763.

Google Scholar

[20] H. Wang et al., Thermodynamic properties of Mg2Si and Mg2Ge investigated by first principles method, J. Alloys Compd. 499 (2010) 68-74.

DOI: 10.1016/j.jallcom.2010.01.134

Google Scholar

[21] S. Onari, M. Cardona, Resonant Raman scattering in the II-IV semiconductors Mg2Si, Mg2Ge, and Mg2Sn, Phys. Rev. B 14 (1976) 3520-3531.

Google Scholar

[22] C. Meiera et al., Raman properties of silicon nanoparticles, Physica E 32 (2006) 155-158.

Google Scholar

[23] E. Anastassakis et al., Effect of static uniaxial stress on the Raman spectrum of silicon, Solid State Commun. 8 (1970) 133-138.

DOI: 10.1016/0038-1098(70)90588-0

Google Scholar