Cementite Dissolution in Cold Drawn Pearlitic Steel Wires: Role of Dislocations

Article Preview

Abstract:

Despite numerous investigations in the past, mechanism of cementite dissolution has still remained a matter of debate. The present work investigates cementite dissolution during cold wire drawing of pearlitic steel (~ 0.8wt% carbon) at medium drawing strain (up to true strain 1.4) and the role of dislocations in the ferrite matrix on the dissolution process. Quantitative phase analysis using x-ray diffraction (XRD) confirms more than 50% dissolution of cementite phase at drawing strain ~ 1.4. Detail analysis of the broadening of ferrite diffraction lines confirms presence of strain anisotropy in ferrite due to high density of dislocations (~ 1015m-2) at drawing strain 1.4. The results of the analysis shows that the screw dislocations near the ferrite-cementite interface are predominantly responsible for pulling the carbon atoms out of the cementite phase leading to its dissolution.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 768-769)

Pages:

304-312

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.V. Belous, V.T. Cherepin, Phys. Met. Metall. 12 (1961) 685.

Google Scholar

[2] V.N. Gridnev, V.G. Gavrilyuk, I.Y. Dekhtyar, Y.Y. Meshkov, P.S. Nizin, V.G. Prokopenko, Phys. Stat. Sol. (a) 14 (1972) 689.

DOI: 10.1002/pssa.2210140238

Google Scholar

[3] V.N. Gridnev, V.V. Nemoshkalenko, Y.Y. Meshkov, V.G. Gavrilyuk, V.G. Prokopenko, O.N. Razumov, Phys. Stat. Sol. (a) 31 (1975) 201.

DOI: 10.1002/pssa.2210310122

Google Scholar

[4] V.G. Gavrilyuk, V.G. Prokopenko, O.N. Razumov, Phys. Stat. Sol. (a) 53 (1979) 147.

Google Scholar

[5] V.N. Gridnev, V.G. Gavrilyuk, Phys. Met. 4 (1982) 531.

Google Scholar

[6] J. Languillaume, G. Kapelski, B. Baudelet, Acta Materialia 45 (1997) 1201.

DOI: 10.1016/s1359-6454(96)00216-9

Google Scholar

[7] H.G. Read, W.T. Reynolds Jr., K. Hono, T. Tarui, Scripta Mater. 37 (1997) 1221.

Google Scholar

[8] F. Danoix, D. Julien, X. Sauvage, J. Copreaux, Mater. Sci. Eng. A 250 (1998) 8.

Google Scholar

[9] M.H. Hong, W.T. Reynolds Jr., T. Tarui, K. Hono. Met. Trans. A 30A (1999) 717.

Google Scholar

[10] W.J. Nam, C.M. Bae, S.J. Oh, S. -J. Kwon, Scripta Mater. 42 (2000) 457.

Google Scholar

[11] X. Sauvage, J. Copreauxf, F. Danoix, D. Blavette, Phil. Mag. A 80 (2000) 781.

Google Scholar

[12] K. Hono, M. Ohnuma, M. Murayama, S. Nishida, A. Yoshie, T. Takahashi, Scripta Mater. 44 (2001) 977.

DOI: 10.1016/s1359-6462(00)00690-4

Google Scholar

[13] V.G. Gavrilyuk, Scripta Mater. 45 (2001) 1469.

Google Scholar

[14] V.G. Gavrilyuk, Scripta Mater. 46 (2002) 175.

Google Scholar

[15] V.G. Gavrilyuk , Mater. Sci. Eng. A 345 (2003) 81.

Google Scholar

[16] N. Maruyama, T. Tarui, H. Tashiro, Scripta Mater. 46 (2002) 599.

Google Scholar

[17] Y.J. Li, P. Choi, C. Borchers, S. Westerkamp, S. Goto, D. Raabe, R. Kirchheim, Acta Mater. 59 (2011) 3965.

DOI: 10.1016/j.actamat.2011.03.022

Google Scholar

[18] J.D. Embury, R.M. Fisher, Acta Metall. 14 (1966)147.

Google Scholar

[19] Y.S. Yang, J.G. Bae, C.G. Park, Mater. Sci. Eng. A 508 (2009) 148.

Google Scholar

[20] Y.J. Li, P. Choi, S. Goto, C. Borchers, D. Raabe, R. Kirchheim, Acta Mater. 60 (2012) 4005.

Google Scholar

[21] J.R. Carvajal, Full PROF 2000, Rietveld refinement and pattern matching analysis program, Laboratoire Leon Brillouin (CEA-CNRS), France.

Google Scholar

[22] G.K. Williamson, W.H. Hall, Acta Metall. 1 (1953) 22.

Google Scholar

[23] T. Ungar, A. Borbely, Appl. Phys. Lett. 69 (1996) 3173.

Google Scholar

[24] M. Wilkens, Phys. Stat. Sol. (a) 2 (1970) 359.

Google Scholar

[25] T. Ungár, I. Dragomir, A. Révész, A. Borbély, J. Appl. Cryst. 32 (1999) 992.

Google Scholar

[26] G. Ribárik, PhD Thesis, Eötvös Löránd University, Hungary, (2003).

Google Scholar

[27] I.G. Wood, L. VocÏadlo, K.S. Knight, D.P. Dobson, W.G. Marshall, G.D. Price, J. Brodholt, J. Appl. Cryst. 37 (2004) 82.

Google Scholar

[28] L. Darken, R. Curry, Physical Chemistry of Metals, Chap. 16, McGraw-Hill Publ. Co., 1953 (p.4).

Google Scholar

[29] G.A. Beresnev, V.I. Sarrak, N.A. Shilov, Problems of Metal Science and Physics of Metals, Vol. 8, Moscow 1964 (p.157).

Google Scholar

[30] A. Revesz, T. Ungar, A. Borbely, J. Lendvai, Nanostr. Mater. 7 (1996) 779.

Google Scholar

[31] A. Borbely, J. Dragomir-Cernatescu, G. Ribarik, T. Ungar, J. Appl. Cryst. 36 (2003) 160.

Google Scholar

[32] T. Ungar, Adv. Eng. Mater. 5 (2003) 323.

Google Scholar

[33] Smithells metals reference book, 7th Ed., E.A. Brandes & G.B. Brook.

Google Scholar

[34] M. Maalekian, E. Kozeschnik, Comp. Coupl. Phase Diagr. Thermochem. 32 (2008) 650.

Google Scholar

[35] A.H. Cottrell, B.A. Bilby, Proc. Phys. Soc. A62 (1949) 49.

Google Scholar

[36] A.W. Cochardt, G. Schoek, H. Wiedersich, Acta Metall. 3 (1955) 533.

Google Scholar