Corrosion and Fatigue of AL-Alloys AA359.0 and AA6060 in Different Surface Treatment States

Article Preview

Abstract:

The consequences of near surface materials properties and residual stress states produced by specific manufacturing operations on damage evolution during corrosion fatigue of the Al-base alloys AA359.0 (German grade G-AlSi9Cu3) and AA6060 (German grade AlMgSi0.5) were systematically investigated. Specimens were processed applying mechanical surface treatments like shot peening or deep rolling and investigated in comparison with turned states. Surface topographies as well as near surface work hardening states and residual stress depth distributions were analyzed. Tension-compression fatigue tests were carried out under laboratory air as well as under salt spray test conditions or in salt solution. Crack formation and crack propagation was studied and characteristic examples are presented. The influence of the mechanical surface treatments on the electrochemical behavior was also investigated. To assess the consequences of near surface materials properties on the corrosion fatigue behavior, their stability during fatigue, in particular the relaxation of residual stress distributions introduced by mechanical surface treatments, was taken into account.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 768-769)

Pages:

572-579

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Scholtes, Eigenspannungen in mechanisch randschichtverformten Werkstoffzuständen, DGM Informationsgesellschaft Verlag, Oberursel, (1991).

DOI: 10.1002/mawe.19910221203

Google Scholar

[2] V. Schulze, Modern Mechanical Surface Treatment, WILEY-VCH Verlag, Weinheim, (2006).

Google Scholar

[3] H. Wohlfahrt, P. Krull, Mechanische Oberflächenbehandlung, WILEY-VCH Verlag, Weinheim, (2000).

Google Scholar

[4] C. Dindorf, Ermüdung und Korrosion nach mechanischer Oberflächenbehandlung von Leichtmetallen, Dr. -Ing. Thesis TU Darmstadt, (2006).

Google Scholar

[5] R. Herzog; Auswirkungen bearbeitungsbedingter Randschichteigenschaften auf das Schwingungsrisskorrosionsverhalten von Ck45 und X35CrMo17; Dr. -Ing. - thesis, University of Braunschweig; Shaker Verlag; Aachen; (1998).

Google Scholar

[6] K. Timmermann; Zur Schädigungsentwicklung bei der Korrosionsermüdung von Aluminium-basislegierungen mit definierten fertigungsbedingten Randschichtzuständen; Dr. -Ing. -thesis, University of Kassel; (2011).

Google Scholar

[7] K. Timmermann, W. Zinn, B. Scholtes; Corrosion Fatigue of Al-alloy AA7020 in Different Surface Treatment States; Proceed. The Tenth International Conference on Shot Peening (ICSP-10); K. Tosha (Eds. ); p.363 – 368; Tokyo; (2008).

Google Scholar

[8] K. Timmermann, W. Zinn, B. Scholtes; Effect of Shot Peening Treatments on Corrosion Fatigue of Cast or Wrought Al-base Alloys; Proceed. The Eleventh International Conference on Shot Peening (ICSPC-11); J. Champaigne (Eds. ); p.267 – 272; South Bend; (2011).

Google Scholar

[9] Dieter Radaj, Michael Vormwald; Ermüdungsfestigkeit: Grundlagen für Ingenieure; Springer Verlag, Berlin; 3. Edition (2007).

Google Scholar

[10] H. -J. Christ; Ermüdungsverhalten metallischer Werkstoffe; WILEY-VCH Verlag, Weinheim; 2. Edition (2009).

Google Scholar

[11] H. Kaesche; Die Korrosion der Metalle; 3. Auflage, 1990; Springer-Verlag Berlin Heidelberg New York.

DOI: 10.1002/bbpc.19800840131

Google Scholar

[12] D. Landolt; Corrosion and Surface Chemistry of Metals; 1. Edition, 2007; EPFL Press Ch-Lausanne.

Google Scholar