The Transformation Mechanism of β Phase to ω-Related Phases in Nb-Rich γ-TiAl Alloys Studied by In Situ High-Energy X-Ray Diffraction

Article Preview

Abstract:

In recent years intermetallic γ-TiAl based alloys with additional amounts of the ternary bcc β Ti(Al,Nb) phase attracted increasing attention due to their improved workability at elevated temperatures. Depending on alloy composition and heat treatment the ductile high-temperature β phase can transform to several ordered phases at lower temperatures. However, currently available phase diagrams of these multiphase alloys are quite uncertain and the precipitation kinetics of some metastable phases is far from understood. In the present study various transformation pathways of the third phase were observed in situ by means of high-energy X-ray diffraction using synchrotron radiation. A Ti-45Al-10Nb (at.%) specimen was subjected to a temperature ramp of repeated heating cycles (700 °C - 1100 °C) with subsequent quenching at different rates. Depending on the quenching rate reversible transformations of the B2-ordered βo phase to different ω-related phases were observed. The results indicate that the complete transformation from βo to hexagonal B82-ordered ωo consists of two steps which are both diffusion controlled but proceed with different velocities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-89

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Kestler and H. Clemens, in: Titanium and Titanium Alloys, edited by C. Leyens and M. Peters, Wiley-VCH, Weinheim (2003) 351-392.

Google Scholar

[2] Structural Aluminides for Elevated Temperature Applications, edited by Y. -W. Kim, D. Morris, R. Yang and C. Leyens, TMS, Warrendale, PA (2008).

Google Scholar

[3] M. Takeyama and S. Kobayashi, Intermetallics 13 (2005) 993-999.

Google Scholar

[4] F. Appel, M. Oehring and J. D. H. Paul, Adv. Eng. Mater. 8 (2006) 371-376.

Google Scholar

[5] H. Clemens, W. Wallgram, S. Kremmer, V. Güther, A. Otto and A. Bartels, Adv. Eng. Mater. 10 (2008) 707-713.

DOI: 10.1002/adem.200800164

Google Scholar

[6] V.T. Witusiewicz, A.A. Bondar, U. Hecht and T. Ya. Velikanova, J. Alloys Comp. 472 (2009) 133-161.

Google Scholar

[7] T. Schmoelzer, K. -D. Liss, G. A. Zickler, I. J. Watson, L. M. Droessler, W. Wallgram, T. Buslaps, A. Studer and H. Clemens, Intermetallics 18 (2010) 1544-1552.

DOI: 10.1016/j.intermet.2010.04.008

Google Scholar

[8] A. Stark, A. Bartels, H. Clemens and F. -P. Schimansky, Adv. Eng. Mater. 10 (2008) 929-934.

Google Scholar

[9] S. Bystrzanowski, A. Bartels, A. Stark, R. Gerling, F. -P. Schimansky and H. Clemens, Intermetallics 18 (2010) 1046-1055.

DOI: 10.1016/j.intermet.2010.01.036

Google Scholar

[10] F. Appel, J.D.H. Paul and M. Oehring, Mater. Sci. Eng.: A 510-511 (2009) 342-349.

Google Scholar

[11] P. Staron, T. Fischer, T. Lippmann, A. Stark, S. Daneshpour, D. Schnubel, E. Uhlmann, R. Gerstenberger, B. Camin, W. Reimers, E. Eidenberger, H. Clemens, N. Huber and A. Schreyer, Adv. Eng. Mater. 13 (2011) 658-663.

DOI: 10.1002/adem.201000297

Google Scholar

[12] R. Gerling, H. Clemens, and F. -P. Schimansky, Adv. Eng. Mater. 6 (2004) 23-38.

Google Scholar

[13] A. Stark, Textur- und Gefügeentwicklung bei der thermomechanischen Umformung Nb-reicher Gamma-TiAl-Basislegierungen, Shaker Verlag, Aachen (2010).

Google Scholar

[14] L. Bendersky, W. Boettinger, B. Burton, F. Biancaniello and C. Shoemaker, Acta Metall. Mater. 38 (1990) 931-943.

DOI: 10.1016/0956-7151(90)90165-d

Google Scholar

[15] M. Sanati, D. West and R. C. Albers, J. Phys.: Condens. Matter. 20 (2008) 465206.

Google Scholar

[16] A. Stark, M. Oehring, F. Pyczak and A. Schreyer, Adv. Eng. Mater. 13 (2011) 700-704.

Google Scholar