Materials Science Forum
Vol. 782
Vol. 782
Materials Science Forum
Vol. 781
Vol. 781
Materials Science Forum
Vols. 778-780
Vols. 778-780
Materials Science Forum
Vol. 777
Vol. 777
Materials Science Forum
Vols. 775-776
Vols. 775-776
Materials Science Forum
Vols. 773-774
Vols. 773-774
Materials Science Forum
Vol. 772
Vol. 772
Materials Science Forum
Vol. 771
Vol. 771
Materials Science Forum
Vol. 770
Vol. 770
Materials Science Forum
Vols. 768-769
Vols. 768-769
Materials Science Forum
Vol. 767
Vol. 767
Materials Science Forum
Vol. 766
Vol. 766
Materials Science Forum
Vol. 765
Vol. 765
Materials Science Forum Vol. 772
Paper Title Page
Abstract: The HEMS beamline at PETRA III has a main energy of 120 keV, is tunable in the range 30-200 keV, and optimized for sub-micrometer focusing with Compound Refractive Lenses. Design, construction, and main funding was the responsibility of the Helmholtz-Zentrum Geesthacht, HZG. Approximately 70 % of the beamtime is dedicated to Materials Research, the rest reserved for “general physics” experiments covered by DESY, Hamburg. The beamline P07 in sector 5 consists of an undulator source optimized for high energies, a white beam optics hutch, an in-house test facility and three independent experimental hutches, plus additional set-up and storage space for long-term experiments. HEMS has partly been operational since summer 2010. First experiments are introduced coming from (a) fundamental research for the investigation of the relation between macroscopic and micro-structural properties of polycrystalline materials, grain-grain-interactions, recrystallisation processes, and the development of new & smart materials or processes; (b) applied research for manufacturing process optimization benefitting from the high flux in combination with ultra-fast detector systems allowing complex and highly dynamic in-situ studies of microstructural transformations, e.g. in-situ friction stir welding; (c) experiments targeting the industrial user community.
57
Abstract: Constitutive plasticity theory is commonly applied to the numerical analysis of welds in one of three ways: using an isotropic hardening model, a kinematic hardening model, or a mixed isotropic-kinematic hardening model. The choice of model is not entirely dependent on its numerical accuracy, however, as a lack of empirical data will often necessitate the use of a specific approach. The present paper seeks to identify the accuracy of each formalism through direct comparison of the predicted and actual post-weld residual stress field developed in a three-pass 316LN stainless steel slot weldment. From these comparisons, it is clear that while the isotropic hardening model tends to noticeably over-predict and the kinematic hardening model slightly under-predict the residual post-weld stress field, the results using a mixed hardening model are quantitatively accurate. Even though the kinematic hardening model generally provides more accurate results when compared to an isotropic hardening formalism, the latter might be a more appealing choice to engineers requiring a conservative design regarding weld residual stress.
65
Abstract: Deformation behavior of high Mn TWIP (twinning induced plasticity) steels was observed using neutron diffraction. Two kinds of specimens were prepared; 0 and 2 wt% of Al TWIP steels. The lattice strains and peak widths of hkl grains were measured under tensile loading. The results provide an insight into the influence of the Al contents on the deformation behavior associated with the microstructure changes in TWIP steels.
73
Abstract: The relation between residual stresses occurring in plastically deformed material and after subsequent annealing is of practical and theoretical importance. In the present work the X-ray multi-reflection method was applied to determine residual stresses and their orientation distribution in rolled and annealed ferrite and austenite steel samples. An important decrease of the first- and the second-order residual stresses was observed during recovery and recrystallization processes. Diffraction peak width was also studied and correlated with stress variation during annealing. Different kinetics of stress relaxation in ferrite and austenite were explained by different levels of stacking fault energy and different types of intergranular interactions occurring in these materials.
79
Abstract: In recent years intermetallic γ-TiAl based alloys with additional amounts of the ternary bcc β Ti(Al,Nb) phase attracted increasing attention due to their improved workability at elevated temperatures. Depending on alloy composition and heat treatment the ductile high-temperature β phase can transform to several ordered phases at lower temperatures. However, currently available phase diagrams of these multiphase alloys are quite uncertain and the precipitation kinetics of some metastable phases is far from understood. In the present study various transformation pathways of the third phase were observed in situ by means of high-energy X-ray diffraction using synchrotron radiation. A Ti-45Al-10Nb (at.%) specimen was subjected to a temperature ramp of repeated heating cycles (700 °C - 1100 °C) with subsequent quenching at different rates. Depending on the quenching rate reversible transformations of the B2-ordered βo phase to different ω-related phases were observed. The results indicate that the complete transformation from βo to hexagonal B82-ordered ωo consists of two steps which are both diffusion controlled but proceed with different velocities.
85
Abstract: The residual stress state in a material has an important role in the mechanism of cracking, induced or assisted by hydrogen. In this contribution, the beamline EDDI in BESSY II instrument in Berlin was used in order to investigate the influence of hydrogen upon the residual stresses state existing in a Supermartensitic stainless steel sample. The method used for investigating the residual stresses is the “sinus square ψ” method. This method involves the usage of high energy X-ray diffraction in order to measure the residual stress state and magnitude. It was found that hydrogen presence has a significant influence upon the magnitude of the residual stresses, as its value decreases with high hydrogen content. This effect is reversible, as hydrogen desorbs from the sample the residual stress magnitude gains its initial value before hydrogen charging.
91
Abstract: Rotation of grain crystal lattice is the basic mechanism of texture formation and of anisotropic behavior of metals during plastic deformation. The classical definition of crystal lattice rotation leads in some cases to different texture and residual stress predictions than the definition based on the orientation preservation of selected sample planes and/or directions. Also the intensity of grain-matrix interaction plays an important role in the prediction of the above quantities. These problems were studied using elasto-plastic deformation model of polycrystalline materials. Examples of austenite and ferrite steels were considered.
97
Abstract: Internal load transfer in an interpenetrating metal/ceramic composite has been studied in this work using energy dispersive synchrotron X-ray diffraction. One of the samples was loaded in tension and the other one in compression. In each case, the sample was first loaded into the elastic-plastic regime, unloaded to zero stress, and reloaded beyond the prior maximum stress. Results show that at stress amounts greater than 100 MPa aluminum deforms plastically and the load is transferred to alumina and silicon. Unloading and reloading typically show reverse plastic deformation, Bauschinger effect and strain hardening in aluminum.
103
Abstract: A specifically designed cruciform-shaped austenitic stainless steel AISI 321 sample was subjected to ex-situ biaxial tension-compression cycling to establish ferromagnetic martensitic phase conversion under the action of plastic deformation. The time-of-flight neutron diffraction technique was employed for in-plane residual stress determination in this sample for both the austenitic and martensitic phases. The 2D data enabled determination of the macro-, micro-, hydro- and deviatoric contributions to the total phase stresses.
109
Abstract: The aim of the present work is to study effects occurring during elatoplastic deformation and unloading of Al/SiCp metal–matrix composite material. We have measured lattice strains for both phases independently using two separated diffraction peaks (the 111 reflections of Al and SiC) during in situ tensile testing. Lattice strains were measured in the direction parallel to the applied load. The results were compared with an elastoplastic model in order to find parameters determining the plastic deformation of Al matrix (critical resolved shear stress and hardening parameter). We have found that during initial deformation relaxation of the thermal stresses occurs in both phases. Afterwards, the distribution of strains measured during the in situ test and unloading of the sample agree very well with self-consistent model prediction.
117