Effects of Hot Extrusion on Microstructure, Texture and Mechanical Properties of Mg-5Li-3Al-2Zn Alloy

Article Preview

Abstract:

This work mainly studied the effects of hot extrusion on microstructure, texture and mechanical properties of Mg-5Li-3Al-2Zn alloy. The results show that the microstructures of as-cast and as-extruded alloys both consist of α-Mg matrix and lamellar eutectic structure (α-Mg and AlLi phases). During the hot extrusion, the large eutectic structure of as-cast alloy was crushed into small eutectic structure and the grains were effectively refined. A {0002} basal texture was formed after hot extrusion. The as-extruded alloy exhibits remarkably improved tensile properties, which is mainly attributed to the grain refinement and the formation of texture.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 773-774)

Pages:

218-225

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.P. Liang, H.R. Gong, Phase stability, mechanical property, and electronic structure of Mg-Li system, J. Alloys Compd. 489(2010)130-135

DOI: 10.1016/j.jallcom.2009.09.032

Google Scholar

[2] Z. Trojanova, Z. Drozd, S. Kudela, Strengthening in Mg-Li matrix composites, Compos. Sci. Technol. 67(2007)1965-1973

DOI: 10.1016/j.compscitech.2006.10.007

Google Scholar

[3] C.H. Chiu, H.Y. Wu, J.Y. Wang, Microstructure and mechanical behavior of LZ91 Mg alloy processed by rolling and heat treatments, J. Alloys Compd. 460(2008)246-252

DOI: 10.1016/j.jallcom.2007.05.106

Google Scholar

[4] J.Q. Li, J.M. An, Z.K. Qu, Effects of solution heat treatment on the microstructure and hardness of Mg-5Li-3Al-2Zn-2Cu alloy, Mater. Sci. Eng. A 527(2010)7138-7142

DOI: 10.1016/j.msea.2010.07.072

Google Scholar

[5] M. Kawasaki, K. Kubota, K. Higashi, Flow and cavitation in a quasi-superplastic two-phase magnesium-lithium alloy, Mater. Sci. Eng. A 429(2006)334-340

DOI: 10.1016/j.msea.2006.05.043

Google Scholar

[6] H.Y. Wu, J.Y. Lin, Z.W. Gao, Effects of minor scandium addition on the properties of Mg-Li-Al-Zn alloy, J. Alloys Compd. 474(2009)158-163

DOI: 10.1016/j.jallcom.2008.06.145

Google Scholar

[7] R.Z. Wu, Z.K. Qu, M.L. Zhang, Reviews on the influences of alloying elements on the microstructure and mechanical properties of Mg-Li base alloys, Rev. Adv. Mater. Sci. 24(2010)14-34

Google Scholar

[8] N. Saito, M. Mabuchi, M. Nakanishi, et al., Aging behavior and the mechanical properties of the Mg-Li-Al-Cu alloy, Scripta Mater. 5(1997)551-555

DOI: 10.1016/s1359-6462(96)00420-4

Google Scholar

[9] Z. Drozd, Z. Trojanova, S. Kudela, Deformation behaviour of Mg-Li-Al alloys, J. Alloys Compd. 378(2004)192-195

DOI: 10.1016/j.jallcom.2004.01.040

Google Scholar

[10] D.K. Xu, L. Liu, Y.B. Xu, et al., The strengthening effect of icosahedral phase on as-extruded Mg-Li alloys, Scripta Mater. 57(2007)285-288

DOI: 10.1016/j.scriptamat.2007.03.017

Google Scholar

[11] T. Liu, W. Zhang, S.D. Wu, et al., Mechanical properties of a two-phase alloy Mg-8%Li-1%Al processed by equal channel angular pressing, Mater. Sci. Eng. A 360(2003)345-349

DOI: 10.1016/s0921-5093(03)00494-5

Google Scholar

[12] R.Z. Wu, Z.K. Qu, M.L. Zhang, Effects of the addition of Y in Mg-8Li-(1,3)Al alloy, Mater. Sci. Eng. A 516(2009)96-99

Google Scholar

[13] M. Furui, C. Xu, T. Aida, et al., Improving the superplastic properties of a two-phase Mg-8% Li alloy through processing by ECAP, Mater. Sci. Eng. A 410-411(2005)439-442

DOI: 10.1016/j.msea.2005.08.143

Google Scholar

[14] Z.K. Qu, X.H. Liu, R.Z. Wu, et al., The superplastic property of the as-extruded Mg–8Li alloy, Mater. Sci. Eng. A 527(2010)3284-3287

DOI: 10.1016/j.msea.2010.01.082

Google Scholar

[15] Z.Y. Chen, Z.Q. Li, C. Yu, Hot deformation behavior of an extruded Mg-Li-Zn-RE alloy, Mater. Sci. Eng. A 528(2011)961-966

DOI: 10.1016/j.msea.2010.09.042

Google Scholar

[16] H. Takuda, S. Kikuchi, T. Tsukada, et al., Effect of strain rate on deformation behaviour of a Mg-8.5Li-1Zn alloy sheet at room temperature, Mater. Sci. Eng. A 271(1999)251-256

DOI: 10.1016/s0921-5093(99)00221-x

Google Scholar

[17] H.Y. Wu, J.Y. Lin, Z.W. Gao, et al., Effects of age heat treatment and thermomechanical processing on microstructure and mechanical behavior of LAZ1010 Mg alloy, Mater. Sci. Eng. A 523(2009)7-12

DOI: 10.1016/j.msea.2009.07.008

Google Scholar

[18] C.T. Chiang, S. Lee, C.L. Chu, Rolling route for refining grains of super light Mg-Li alloys containing Sc and Be, Trans. Nonferrous Met. Soc. China 20(2010)1374-1379

DOI: 10.1016/s1003-6326(09)60307-1

Google Scholar

[19] J.Y. Wang, Mechanical properties of room temperature rolled MgLiAlZn alloy, J. Alloys Compd. 485(2009)241-244

DOI: 10.1016/j.jallcom.2009.06.047

Google Scholar

[20] T. Liu, S.D. Wu, S.X. Li, et al., Microstructure evolution of Mg-14% Li-1% Al alloy during the process of equal channel angular pressing, Mater. Sci. Eng. A 460-461(2007)499-503

DOI: 10.1016/j.msea.2007.01.108

Google Scholar

[21] S.R. Agnew, M.H. Yoo, C.N. Tome, Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y, Acta Mater. 49(2001)4277-4289

DOI: 10.1016/s1359-6454(01)00297-x

Google Scholar

[22] T. Liu, Y.D. Wang, S.D. Wu, et al., Textures and mechanical behavior of Mg-3.3%Li alloy after ECAP, Scripta Mater. 51(2004)1057-1061

DOI: 10.1016/j.scriptamat.2004.08.007

Google Scholar

[23] J.Q. Li, Z.K. Qu, R.Z. Wu, et al., Effects of Cu addition on the microstructure and hardness of Mg-5Li-3Al-2Zn alloy, Mater. Sci. Eng. A 527(2010)2780-2783

DOI: 10.1016/j.msea.2010.01.021

Google Scholar

[24] T. Kucukomeroglu, Effect of equal-channel angular extrusion on mechanical and wear properties of eutectic Al-12Si alloy, Mater. Des. 31(2010)782-789

DOI: 10.1016/j.matdes.2009.08.004

Google Scholar

[25] J. Koike, T. Kobayashi, T. Mukai, et al., The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys, Acta Mater, 51(2003)2055-2065

DOI: 10.1016/s1359-6454(03)00005-3

Google Scholar

[26] M. Shahzad, L. Wagner, Influence of extrusion parameters on microstructure and texture developments, and their effects on mechanical properties of the magnesium alloy AZ80, Mater. Sci. Eng. A 506(2009)141-147

DOI: 10.1016/j.msea.2008.11.038

Google Scholar

[27] S.J. Liang, Z.Y. Liu, E.D. Wang, Microstructure and mechanical properties of Mg-Al-Zn alloy sheet fabricated by cold extrusion, Mater. Lett. 62(2008)4009-4011

DOI: 10.1016/j.matlet.2008.05.045

Google Scholar

[28] C.W. Yang, T.S. Lui, L.H. Chen, et al., Tensile mechanical properties and failure behaviors with the ductile-to-brittle transition of the α+β-type Mg-Li-Al-Zn alloy, Scripta Mater. 61(2009)1141-1144

DOI: 10.1016/j.scriptamat.2009.08.037

Google Scholar