[1]
J.R. Rice, "Tensile crack tip fields in elastic-ideally plastic crystals", Mechanics of Materials 6 (1987) 317-335.
DOI: 10.1016/0167-6636(87)90030-5
Google Scholar
[2]
K. Tanaka, T. Mura, "A dislocation model for fatigue crack initiation", Journal of Applied Mechanics 48 (1981) 97-103.
DOI: 10.1115/1.3157599
Google Scholar
[3]
K. Tanaka and T. Mura, "A theory of fatigue crack initiation at inclusions", Metallurgical Transactions A 13A (1982) 117-123.
DOI: 10.1007/bf02642422
Google Scholar
[4]
T. Mura, Y. Nakasone, "A theory of fatigue crack initiation in solids", Journal of Applied Mechanics 57 (1990) 1-6.
DOI: 10.1115/1.2888304
Google Scholar
[5]
G. Venkataraman, Y-W. Chung, Y. Naokasone, T. Mura, "Free energy formulation of fatigue crack initiation along persistent slip bands: calculation of S-N curves and crack depths", Acta Metallurgica et Materialia 38 (1990) 31-40.
DOI: 10.1016/0956-7151(90)90132-z
Google Scholar
[6]
H. Fan, L.M. Keer, T. Mura, "The effect of plastic deformation on crack initiation in fatigue", International Journal of Solids and Structures 28 (1991) 1095-1104.
DOI: 10.1016/0020-7683(91)90104-n
Google Scholar
[7]
T. Mura, "A theory of fatigue crack initiation", Materials Science and Engineering A176 (1994) 61-70.
Google Scholar
[8]
J. Lemaitre, "A continuous damage mechanics model for ductile fracture", Journal of Engineering Materials and Technology 107 (1985) 83-89.
DOI: 10.1115/1.3225775
Google Scholar
[9]
J. Lemaitre, A course on damage mechanics, Sprinder-Verlag, 1996.
Google Scholar
[10]
J. Lemaitre, R. Desmorat, M. Sauzay, "Anisotropic damage law of evolution", European Journal of Mechanics – A. Solids 19 (2000) 187-208.
DOI: 10.1016/s0997-7538(00)00161-3
Google Scholar
[11]
C.L. Chow, J. Wang, "An anisotropic theory of continuum damage mechanics for ductile fracture", Engineering fracture mechanics 27 (1987) 547-558.
DOI: 10.1016/0013-7944(87)90108-1
Google Scholar
[12]
Y. Wei, C.L. Chow, "A damage-coupled TMF constitutive model for solder alloy", International Journal of damage mechanics 10 (2000) 133-152.
DOI: 10.1106/cx9f-kfu9-5b26-lgqq
Google Scholar
[13]
A.H. Zhao, C.L. Chow, "An efficient explicit algorithm for damage-coupled viscoplastic fatigue model", Finite elements in analysis and design 43 (2007) 681-690.
DOI: 10.1016/j.finel.2007.02.002
Google Scholar
[14]
C.L. Chow, Y. Wei, "Constitutive modeling of material damage for fatigue failure prediction", International Journal of Damage Mechanics 8 (1999) 355-375.
DOI: 10.1177/105678959900800405
Google Scholar
[15]
Y. Wei, C.L. Chow, M.K. Neilson, H.E. Fang, "Constitutive model for Sn-Pb solder under fatigue loading", International Journal of Damage Mechanics 13 (2004) 147-161.
DOI: 10.1177/1056789504041056
Google Scholar
[16]
Y. Wei, C.L. Chow, P. Vianco, E. Fang, "Isothermal fatigue damage model for lead-free solder", International Journal of Damage Mechanics 15 (2006) 109-119.
DOI: 10.1177/1056789506060732
Google Scholar
[17]
M. Maki-Jaskari, K. Kaski, A. Kuronen, "Simulations of crack initiation in silicon", Computational Materials Science 17 (2000) 336-342.
DOI: 10.1016/s0927-0256(00)00048-3
Google Scholar
[18]
Y. Shimomura, M. Kiritani, I. Mukouda, "Computer simulation study of the atomistic mechanism of deformation and fracture initiation in thin fcc metal films", Materials Science and Engineering A 350 (2003) 238-244.
DOI: 10.1016/s0921-5093(02)00708-6
Google Scholar
[19]
L. Farrissey, M. Ludwig, P.E. McHugh, S. Schmauder, "An atomistic study of void growth in single crystalline copper", Computational Materials Science 18 (2000) 102-117.
DOI: 10.1016/s0927-0256(00)00091-4
Google Scholar
[20]
Y. Gao, C. Lu, G. Michal, A.K. Tieu, "A study of crack propagation in bcc iron by molecular dynamics method", Key Engineering Materials 395-397 (2008) 453-456.
DOI: 10.4028/www.scientific.net/kem.385-387.453
Google Scholar
[21]
C. Lu, Y. Gao, H. Zhu, A.K. Tieu, "Atomic simulation of effect of stacking fault and dislocation on fracture behaviour in Fe crystal", Key Engineering Materials 395-397 (2008) 457-460.
DOI: 10.4028/www.scientific.net/kem.385-387.457
Google Scholar
[22]
H. Rafii-Tabar, L. Hua, M. Cross, "A multi-scale atomistic-continuum modeling of crack propagation in a two-dimensional macroscopic plate", Journal of Physics: Condensed Matter 10 (1998) 2375-2387.
DOI: 10.1088/0953-8984/10/11/003
Google Scholar
[23]
B. Wang, V. Karuppiah, H. Lu, S. Roy, R. Komanduri, "Two-dimensional mixed mode crack simulation using the material point method", Mechanics of Advanced Materials and Structures 12 (2005) 471-484.
DOI: 10.1080/15376490500259293
Google Scholar
[24]
H. Tan, J.A. Nairn, "Hierarchical, Adaptive, Material Point Method for Dynamic Energy Release Rate Calculations", Computational Methods in Applied Mechanics and Engineering 191 (2002) 2095–2109.
DOI: 10.1016/s0045-7825(01)00377-2
Google Scholar
[25]
P.F. Thomason, G. Rauchs, P.J. Withers, "Multi-scale finite element modeling of fatigue crack growth in TiAl intermetallic matrix TiNb and Nb platelet composites", Acta Materialia 50 (2002) 1453-1466.
DOI: 10.1016/s1359-6454(02)00003-4
Google Scholar
[26]
H. Tan, W. Yang, "Atomistic/continuum simulation of interfacial fracture – Part II: Atomistic/dislocation/continuum simulation", Acta Mechanica Sinica 10 (1994) 237-249.
DOI: 10.1007/bf02487612
Google Scholar
[27]
N. N. Huynh, C. Lu, G. Michal, K. Tieu, "A modelling of tensile deformation around the notch tip in single crystal aluminum", Computational Materials Science 48 (2010) 179-186.
DOI: 10.1016/j.commatsci.2009.12.026
Google Scholar
[28]
N.N. Huynh, C. Lu, L. Si, K. Tieu, "A study of microstructural evolution around crack tip using crystal plasticity finite-element method", Proceedings of the Institution of Mechanical Engineers Part J Journal of Engineering Tribology 222 (2008) 183-192.
DOI: 10.1243/13506501jet374
Google Scholar
[29]
N. N. Huynh, C. Lu*, G. Michal, K. Tieu, "Misorientation analyses of cpfem results of aluminum single crystals under tension", International Journal of Plasticity (manuscript submitted), 2009.
Google Scholar
[30]
S.D. Patil, R. Narasimhan, P. Biswas, R.K. Mishra, "Crack tip fields in a single edge notched aluminum single crystal specimen", Journal of Engineering Materials and Technology, vol. 130, pp.021013-1 – 021013-11, 2008.
DOI: 10.1115/1.2884330
Google Scholar
[31]
B.-J. Lee, S.-H. Choi, "Computation of grain boundary energies", Modeling and Simulation in Materials Science and Engineering, vol. 12, pp.621-632, 2004.
Google Scholar
[32]
G.C. Hasson, C. Goux, "Interfacial energies of tilt boundaries in aluminum, experimental and theoretical determination", Scripta Metallurgica 5 (1971) 889-894.
DOI: 10.1016/0036-9748(71)90064-0
Google Scholar
[33]
S.R. Nishitani, S. Ohgushi, Y. Inoue, H. Adachi, "Grain boundary energies of Al simulated by environment-dependent embeded atom method", Materials Science and Engineering A 309-310 (2001) 490-494.
DOI: 10.1016/s0921-5093(00)01636-1
Google Scholar
[34]
G. Hasson, J.-Y. Boos, I. Herbeuval, M. Biscondi, C. Goux, "Theoretical and experimental determinations of grain boundary structures and energies: correlation with various experimental results", Surface Science 31 (1972) 115-137.
DOI: 10.1016/0039-6028(72)90256-7
Google Scholar
[35]
H.N.G. Wadley, X. Zhou, R.A. Johnson, M. Neurock, "Mechanisms, models and methods of vapor deposition", Progress in Materials Science 46 (2001) 329-377.
DOI: 10.1016/s0079-6425(00)00009-8
Google Scholar
[36]
R.R. Zope, Y. Mishin, "Interatomic potentials for atomistic simulations of the Ti-Al system", Physical Review B 68 (2003) 024102-1 - 024102-14.
DOI: 10.1103/physrevb.68.024102
Google Scholar
[37]
Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, "Embedded-atom potential for B2-NiAl", Physical Review B 65 (2002) 224114-1 - 224114-14.
Google Scholar
[38]
Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, "Interatomic potentials for monoatomic metals from experimental data and ab initio calculations", Physical Review B 59 (1999) 3393-3407.
DOI: 10.1103/physrevb.59.3393
Google Scholar
[39]
B-J. Lee, J-H. Shim, M.I. Baskes, "Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method", Physical Review B 68 (2003) 144112-1 – 144112-11.
DOI: 10.1103/physrevb.68.144112
Google Scholar
[40]
V. Randle, O. Engler, Introduction to Texture Analysis – Macrotexture, Microtexture & Orientation Mapping, CRC Press, United States of America, 2000.
DOI: 10.1201/9781482287479
Google Scholar
[41]
K.S. Fu, R.C. Gonzalez, C.S.G. Lee, Robotics – Controls, Sensing, Vision, and Intellligence, McGraw-Hill Book Company, United States of America, 1987.
Google Scholar
[42]
ABAQUS Theory manual, version 6.6, 2006, ABAQUS Inc.
Google Scholar