[1]
B. L. Mordike, T. Eber, Magnesium. Properties – applications – potential, Mat. Sci. Eng. A. 302(1) (2001) 37-45.
Google Scholar
[2]
K. Funatani, Emerging technology in surface modification of light metals, Surf. Coat.Tech. 133-134 (2000) 264-272.
DOI: 10.1016/s0257-8972(00)00940-3
Google Scholar
[3]
M. Kleiner, M. Geiger, A. Klaus, Manufacturing of lightweight components by metal forming, CIRP Ann.– Manufact. Techn. 52(2) (2003) 521-542.
DOI: 10.1016/s0007-8506(07)60202-9
Google Scholar
[4]
J. E. Gray, B. Luan, J. Protective coatings on magnesium and its alloys - a critical review, Alloy Compd. 336(1-2) (2002) 88-113.
DOI: 10.1016/s0925-8388(01)01899-0
Google Scholar
[5]
A. E. Diniz, D. M. Gomes, A. Jr. Braghini, Turning of hardened steel with interrupted and semi-interrupted cutting, J. Mater. Process. Tech. 159(2) (2005) 240-248.
DOI: 10.1016/j.jmatprotec.2004.05.011
Google Scholar
[6]
A. J. Oliveira, A. E. Diniz, D. J. Ursolino, Hard turning in continuous and interrupted cut with PCBN and whisker-reinforced cutting tolos, J. Mater. Process. Tech. 209(12-13) (2009) 5262-5270.
DOI: 10.1016/j.jmatprotec.2009.03.012
Google Scholar
[7]
H. Chandrasekaran, H. Thoors, Tribology in interrupted machining: role of interruption cycle and work material, Wear. 179(1-2) (1994) 83-88.
DOI: 10.1016/0043-1648(94)90223-2
Google Scholar
[8]
H. K. Tönshoff, W. Kaestnerand, R. Schnadt, Machinability of forged steels in interrupted cutting, J. Mater. Process. Tech. 21(2) (1990) 219-236.
DOI: 10.1016/0924-0136(90)90007-h
Google Scholar
[9]
ASTM International, Editor: Bearing Steel Technology. STP 1419, ASTM International, Philadelphia, 2002.
Google Scholar
[10]
K. Weinert, I. Inasaki, J. W. Sutherland, T. Wakabayashi, Dry machining and minimum quantity lubrication, CIRP Ann.–Manuf. Techn. 53(2) (2004) 511-537.
DOI: 10.1016/s0007-8506(07)60027-4
Google Scholar
[11]
O. W. Boston, W. W. Gilbert, Influence on tool life and power of nose radius, chamfer and peripheral cutting edge angle when face milling a 40000 psi cast iron, Trans. ASME. 69 (1947) 117-124.
DOI: 10.1115/1.4017310
Google Scholar
[12]
M. Stanford, P. M. Lister, K. A. Kibble, Investigation into the effect of cutting environment on tool life during the milling of a BS970-080A15 (En32b) low carbon Steel, Wear. 262(11-12) (2007) 1496-1503.
DOI: 10.1016/j.wear.2007.01.033
Google Scholar
[13]
H. K. Tönshoff, H. G. Wobker, C. Cassel. Wear characteristics of cermet cutting tolos, CIRP Ann.–Manuf. Techn. 43(1) (1994) 89-92.
DOI: 10.1016/s0007-8506(07)62171-4
Google Scholar
[14]
S. M. Bhatia, P. C. Pandey, H. S. Shah, Thermal cracking of carbide tools during intermittent cutting, Wear. 51(2) (1978) 201-211.
DOI: 10.1016/0043-1648(78)90260-0
Google Scholar
[15]
H. Chandrasekaran, Thermal fatigue in tool carbides and its relevance to milling cutters, CIRP Ann.–Manuf. Techn. 34(1) (1985) 125-128.
DOI: 10.1016/s0007-8506(07)61739-9
Google Scholar
[16]
N. N. Zorev, Machining steel with a carbide tipped tool in intermittent heavy cutting conditions, Russ. Eng. J. 43(2) (1963) 43-47.
Google Scholar
[17]
N. N. Zorev, K. A. Sawiaskin, Carbide tool life at interrupted cut with continuous cycles, CIRP Ann.–Manuf. Techn. 18(3) (1969) 555-562.
Google Scholar
[18]
P. M. Braiden, D. S. Dugdale, Failure of carbide tools in intermittent cutting, in Iron and Steel Institure (Ed.), Materials for metal cutting. Proceedings of the Conference on Materials for Metal Cutting, London: Iron and Steel Institute., Scarborough, 1970, pp.30-34.
DOI: 10.1016/0301-679x(70)90021-6
Google Scholar
[19]
I. Yellowley, G. Barrow, The influence of thermal cycling on tool life in peripheral milling, Int. J. Mach. Tool Des. Res. 16(1) (1976) 1-12.
DOI: 10.1016/0020-7357(76)90009-3
Google Scholar
[20]
A. J. Pekelharing, The exit failure of cemented carbide face-milling cutters: Part I. Fundamentals and phenomena, CIRP Ann.–Manuf. Techn. 33(1) (1984) 47-50.
DOI: 10.1016/s0007-8506(07)61377-8
Google Scholar
[21]
C. A. van Luttervelt, H. R. Willemse, The exit failure of cemented carbide face milling cutters Part II - Testing of commercial cutters, CIRP Ann. – Manuf. Techn. 33(1) (1984) 51-54.
DOI: 10.1016/s0007-8506(07)61378-x
Google Scholar
[22]
A. E. Diniz, J. C. Filho, Influence of the relative positions of tool and workpiece on tool life, tool wear and surface finish in the face milling process, Wear. 232(1) (1999) 67-75.
DOI: 10.1016/s0043-1648(99)00159-3
Google Scholar
[23]
G. S. Andreev, Contact stresses in intermittent cutting process, Russ. Eng. J. 49(3) (1969) 70-74.
Google Scholar
[24]
G. S. Andreev, Efficiency of cutting tools in intermittent cutting conditions, Russ. Eng. J. 54(1) (1974) 54.
Google Scholar
[25]
E. Kuljanic, An investigation of wear in single-tooth and multi-tooth milling, Int. J. Mach. Tool Des. Res. 14(1) (1974) 95-109.
DOI: 10.1016/0020-7357(74)90014-6
Google Scholar
[26]
S. M. Bhatia, P. C. Pandey, H. S. Shah, Failure of cemented carbide tools in intermittent cutting, Precis. Eng., 1(3) (1979) 148-152.
DOI: 10.1016/0141-6359(79)90041-2
Google Scholar
[27]
G. S. Andreev. Effect of thermal and adhesion phenomena on tool life in interrupted machining. Russ. Eng. J., 54(10) (1974) 70-73.
Google Scholar
[28]
Y. G. Kabaldin, Chip-tool adhesion in intermittent cutting, Mach. Tool, 44(4) (1973) 56-58.
Google Scholar
[29]
I. Yellowley, G. Barrow, The assessment of tool life in peripheral milling, in: MacMillan (Ed.), Advances in Machine Tool Design and Research, Proceedings of the 19th International Machine Tool Design and Research Conference, MacMillan, London, 1978, pp.443-452.
DOI: 10.1007/978-1-349-81412-1_52
Google Scholar
[30]
T. Hoshi, K. Okushima. Optimum diameter and positions of fly cutter for milling steel at light cuts, J. Eng. Ind.–Trans. ASME. 87(4) (1965) 442-446.
DOI: 10.1115/1.3670859
Google Scholar
[31]
E. O. Ezugwu, S. H. Tang, Surface abuse when machining cast iron and nickel base superalloy (inconel 718) with ceramic tools, in: D. Browne (Ed.), Proceedings of 9th Conference of the Irish Manufacturing Committee, 1992, pp.436-450.
DOI: 10.1016/0924-0136(95)01786-0
Google Scholar
[32]
G. Taguchi, System of experimental design, American Supplier Institute, New York, 1987.
Google Scholar
[33]
D. C. Montgomery, Design and analysis of experiments, John Wiley & Sons, Inc., New York, 2005.
Google Scholar
[34]
E. M. Rubio, A. M. Camacho, J. M. Sánchez-Sola, M. A. Sebastián, M. Marcos, Surface roughness of AA7050 alloy turned bars. Analysis of the influence of the length of machining, J. Mater. Process. Tech. 162- 163C (2005) 682-689.
DOI: 10.1016/j.jmatprotec.2005.02.096
Google Scholar
[35]
E. Sayit, K. Aslantas, A. Çiçek, Tool wear mechanism in interrupted cutting conditions, Mater. Manuf. Process. 24 (2009) 476-483.
DOI: 10.1080/10426910802714423
Google Scholar
[36]
ANSI/ASME, B46.1-2009, American Society of Mechanical Engineers, New York, 2010.
Google Scholar
[37]
E. M. Rubio, J. M. Sáenz de Pipaón, M.Villeta, M. A. Sebastián, Experimental study for improving repair operations of pieces of magnesium UNS M11311 obtained by dry turning, Proceedings of the 12 CIRP Conference on Modelling of Machining, in: P. J. Arrazola (Ed.), pp.819-826.
DOI: 10.4028/www.scientific.net/amr.264-265.967
Google Scholar