Surface Roughness Analysis of Magnesium Pieces Obtained by Intermittent Turning

Article Preview

Abstract:

This paper presents an experimental study to analyze the surface roughness reached in pieces of UNS M11917 magnesium alloy obtained by intermittent turning. A design of experiments (DOE) was established to carry out the study. Namely, factors identified as posible sources of variation of the surface roughness and their levels, written between parentheses, are the following: depth of cut (1), feed rate (2), spindle speed (2), type of tool (2), quantity of lubrication (3), type of interruption (3), measurement length (3) and measurement generatrice (3). Due to the high number of possible combinations that can be generated with the set of factors and levels identified a combined design of experiments L4x32 was performed. Data are was analyzed by means of the analysis of variance (ANOVA) method. The main results of the statistical analysis highlight the great influence of the feed rate on surface roughness among the set of factors and their interactions considered. In addition, focusing on the intermittent cutting, type of interruption and its interaction with the type of tool used are also important sources of variation, but at a lower level than feed rate.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 773-774)

Pages:

377-391

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. L. Mordike, T. Eber, Magnesium. Properties – applications – potential, Mat. Sci. Eng. A. 302(1) (2001) 37-45.

Google Scholar

[2] K. Funatani, Emerging technology in surface modification of light metals, Surf. Coat.Tech. 133-134 (2000) 264-272.

DOI: 10.1016/s0257-8972(00)00940-3

Google Scholar

[3] M. Kleiner, M. Geiger, A. Klaus, Manufacturing of lightweight components by metal forming, CIRP Ann.– Manufact. Techn. 52(2) (2003) 521-542.

DOI: 10.1016/s0007-8506(07)60202-9

Google Scholar

[4] J. E. Gray, B. Luan, J. Protective coatings on magnesium and its alloys - a critical review, Alloy Compd. 336(1-2) (2002) 88-113.

DOI: 10.1016/s0925-8388(01)01899-0

Google Scholar

[5] A. E. Diniz, D. M. Gomes, A. Jr. Braghini, Turning of hardened steel with interrupted and semi-interrupted cutting, J. Mater. Process. Tech. 159(2) (2005) 240-248.

DOI: 10.1016/j.jmatprotec.2004.05.011

Google Scholar

[6] A. J. Oliveira, A. E. Diniz, D. J. Ursolino, Hard turning in continuous and interrupted cut with PCBN and whisker-reinforced cutting tolos, J. Mater. Process. Tech. 209(12-13) (2009) 5262-5270.

DOI: 10.1016/j.jmatprotec.2009.03.012

Google Scholar

[7] H. Chandrasekaran, H. Thoors, Tribology in interrupted machining: role of interruption cycle and work material, Wear. 179(1-2) (1994) 83-88.

DOI: 10.1016/0043-1648(94)90223-2

Google Scholar

[8] H. K. Tönshoff, W. Kaestnerand, R. Schnadt, Machinability of forged steels in interrupted cutting, J. Mater. Process. Tech. 21(2) (1990) 219-236.

DOI: 10.1016/0924-0136(90)90007-h

Google Scholar

[9] ASTM International, Editor: Bearing Steel Technology. STP 1419, ASTM International, Philadelphia, 2002.

Google Scholar

[10] K. Weinert, I. Inasaki, J. W. Sutherland, T. Wakabayashi, Dry machining and minimum quantity lubrication, CIRP Ann.–Manuf. Techn. 53(2) (2004) 511-537.

DOI: 10.1016/s0007-8506(07)60027-4

Google Scholar

[11] O. W. Boston, W. W. Gilbert, Influence on tool life and power of nose radius, chamfer and peripheral cutting edge angle when face milling a 40000 psi cast iron, Trans. ASME. 69 (1947) 117-124.

DOI: 10.1115/1.4017310

Google Scholar

[12] M. Stanford, P. M. Lister, K. A. Kibble, Investigation into the effect of cutting environment on tool life during the milling of a BS970-080A15 (En32b) low carbon Steel, Wear. 262(11-12) (2007) 1496-1503.

DOI: 10.1016/j.wear.2007.01.033

Google Scholar

[13] H. K. Tönshoff, H. G. Wobker, C. Cassel. Wear characteristics of cermet cutting tolos, CIRP Ann.–Manuf. Techn. 43(1) (1994) 89-92.

DOI: 10.1016/s0007-8506(07)62171-4

Google Scholar

[14] S. M. Bhatia, P. C. Pandey, H. S. Shah, Thermal cracking of carbide tools during intermittent cutting, Wear. 51(2) (1978) 201-211.

DOI: 10.1016/0043-1648(78)90260-0

Google Scholar

[15] H. Chandrasekaran, Thermal fatigue in tool carbides and its relevance to milling cutters, CIRP Ann.–Manuf. Techn. 34(1) (1985) 125-128.

DOI: 10.1016/s0007-8506(07)61739-9

Google Scholar

[16] N. N. Zorev, Machining steel with a carbide tipped tool in intermittent heavy cutting conditions, Russ. Eng. J. 43(2) (1963) 43-47.

Google Scholar

[17] N. N. Zorev, K. A. Sawiaskin, Carbide tool life at interrupted cut with continuous cycles, CIRP Ann.–Manuf. Techn. 18(3) (1969) 555-562.

Google Scholar

[18] P. M. Braiden, D. S. Dugdale, Failure of carbide tools in intermittent cutting, in Iron and Steel Institure (Ed.), Materials for metal cutting. Proceedings of the Conference on Materials for Metal Cutting, London: Iron and Steel Institute., Scarborough, 1970, pp.30-34.

DOI: 10.1016/0301-679x(70)90021-6

Google Scholar

[19] I. Yellowley, G. Barrow, The influence of thermal cycling on tool life in peripheral milling, Int. J. Mach. Tool Des. Res. 16(1) (1976) 1-12.

DOI: 10.1016/0020-7357(76)90009-3

Google Scholar

[20] A. J. Pekelharing, The exit failure of cemented carbide face-milling cutters: Part I. Fundamentals and phenomena, CIRP Ann.–Manuf. Techn. 33(1) (1984) 47-50.

DOI: 10.1016/s0007-8506(07)61377-8

Google Scholar

[21] C. A. van Luttervelt, H. R. Willemse, The exit failure of cemented carbide face milling cutters Part II - Testing of commercial cutters, CIRP Ann. – Manuf. Techn. 33(1) (1984) 51-54.

DOI: 10.1016/s0007-8506(07)61378-x

Google Scholar

[22] A. E. Diniz, J. C. Filho, Influence of the relative positions of tool and workpiece on tool life, tool wear and surface finish in the face milling process, Wear. 232(1) (1999) 67-75.

DOI: 10.1016/s0043-1648(99)00159-3

Google Scholar

[23] G. S. Andreev, Contact stresses in intermittent cutting process, Russ. Eng. J. 49(3) (1969) 70-74.

Google Scholar

[24] G. S. Andreev, Efficiency of cutting tools in intermittent cutting conditions, Russ. Eng. J. 54(1) (1974) 54.

Google Scholar

[25] E. Kuljanic, An investigation of wear in single-tooth and multi-tooth milling, Int. J. Mach. Tool Des. Res. 14(1) (1974) 95-109.

DOI: 10.1016/0020-7357(74)90014-6

Google Scholar

[26] S. M. Bhatia, P. C. Pandey, H. S. Shah, Failure of cemented carbide tools in intermittent cutting, Precis. Eng., 1(3) (1979) 148-152.

DOI: 10.1016/0141-6359(79)90041-2

Google Scholar

[27] G. S. Andreev. Effect of thermal and adhesion phenomena on tool life in interrupted machining. Russ. Eng. J., 54(10) (1974) 70-73.

Google Scholar

[28] Y. G. Kabaldin, Chip-tool adhesion in intermittent cutting, Mach. Tool, 44(4) (1973) 56-58.

Google Scholar

[29] I. Yellowley, G. Barrow, The assessment of tool life in peripheral milling, in: MacMillan (Ed.), Advances in Machine Tool Design and Research, Proceedings of the 19th International Machine Tool Design and Research Conference, MacMillan, London, 1978, pp.443-452.

DOI: 10.1007/978-1-349-81412-1_52

Google Scholar

[30] T. Hoshi, K. Okushima. Optimum diameter and positions of fly cutter for milling steel at light cuts, J. Eng. Ind.–Trans. ASME. 87(4) (1965) 442-446.

DOI: 10.1115/1.3670859

Google Scholar

[31] E. O. Ezugwu, S. H. Tang, Surface abuse when machining cast iron and nickel base superalloy (inconel 718) with ceramic tools, in: D. Browne (Ed.), Proceedings of 9th Conference of the Irish Manufacturing Committee, 1992, pp.436-450.

DOI: 10.1016/0924-0136(95)01786-0

Google Scholar

[32] G. Taguchi, System of experimental design, American Supplier Institute, New York, 1987.

Google Scholar

[33] D. C. Montgomery, Design and analysis of experiments, John Wiley & Sons, Inc., New York, 2005.

Google Scholar

[34] E. M. Rubio, A. M. Camacho, J. M. Sánchez-Sola, M. A. Sebastián, M. Marcos, Surface roughness of AA7050 alloy turned bars. Analysis of the influence of the length of machining, J. Mater. Process. Tech. 162- 163C (2005) 682-689.

DOI: 10.1016/j.jmatprotec.2005.02.096

Google Scholar

[35] E. Sayit, K. Aslantas, A. Çiçek, Tool wear mechanism in interrupted cutting conditions, Mater. Manuf. Process. 24 (2009) 476-483.

DOI: 10.1080/10426910802714423

Google Scholar

[36] ANSI/ASME, B46.1-2009, American Society of Mechanical Engineers, New York, 2010.

Google Scholar

[37] E. M. Rubio, J. M. Sáenz de Pipaón, M.Villeta, M. A. Sebastián, Experimental study for improving repair operations of pieces of magnesium UNS M11311 obtained by dry turning, Proceedings of the 12 CIRP Conference on Modelling of Machining, in: P. J. Arrazola (Ed.), pp.819-826.

DOI: 10.4028/www.scientific.net/amr.264-265.967

Google Scholar