Prototype Design of Wire-Sawing Machine for Preliminary Experiments to Lunar and Planetary Exploration

Article Preview

Abstract:

This paper describes design of a prototype of a wire-sawing machine and some machining demonstrations. Slicing the rock samples is preferable to observe their interior for in-situ analysis in lunar and planetary explorations. The requirements for the wire-sawing machine were clarified as follows: using a long saw wire to extend the duty cycle, and winding and unwinding the saw wire with two reels. After building a prototype of the wire-sawing machine, the cutting performance in vacuum was compared with that in air. The cutting depth in vacuum leveled off and was smaller than that in air.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 773-774)

Pages:

392-399

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Nakamura, T. Noguchi, M. Tanaka, M. E. Zolensky, M. Kimura, A. Tsuchiyama, A. Nakato, T. Ogami, H. Ishida, M. Uesugi, T. Yada, K. Shirai, A. Fujimura, R. Okazaki, S. A. Sandford, Y. Ishibashi, M. Abe, T. Okada, M. Ueno, T. Mukai, M. Yoshikawa, J. Kawaguchi: Itokawa Dust Particles: A Direct Link Between S-Type Asteroids and Ordinary Chondrites, Science, 333, 6046, (2011) 1113–1116. Fig. 11 Surface of saw wire and debris. (a) Before machining, (b) After machining in air, (c) After machining in vacuum, (d) Debris, (e) Abrasive machining in air, (f) Abrasive machining in vacuum.

DOI: 10.1126/science.1207758

Google Scholar

[2] R. P. Mueller, P. J. van Susante: A Review of Extra-Terrestrial Mining Robot Concepts, Proc. Earth and Space 2012 Conf., Pasadena, CA, USA, (2012) 295–314.

DOI: 10.1061/9780784412190.034

Google Scholar

[3] X. Bao, Y. Bar-Cohen, Z. Chang, B. P. Dolgin, S. Sherrit, D. S. Pal, S. Du, T. Peterson: Modeling and computer simulation of ultrasonic/sonic driller/corer (USDC), IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 50, 9 (2003) 1147–1160.

DOI: 10.1109/tuffc.2003.1235326

Google Scholar

[4] K. Furutani, Y. Tagata: Development of Small Vibratory Crusher for Sample-return Mission, Proc. 2007 Ann. Meet. Am. Soc. Precis. Eng., Dallas, TX, USA, (2007) 236–239.

Google Scholar

[5] K. Zacny, G. Paulsen, M. Szczesiak, J. Craft, P. Chu, C. McKay, B. Glass, A. Davila, M. Marinova, W. Pollard, W. Jackson: LunarVader: Development and Testing of Lunar Drill in Vacuum Chamber and in Lunar Analog Site of Antarctica, J. Aerosp. Eng., 26, 1 (2013) 74–86.

DOI: 10.1061/(asce)as.1943-5525.0000212

Google Scholar

[6] T. P. Gouache, Y. Gao, P. Coste, Y. Gourinat: First experimental investigation of dual-reciprocating drilling in planetary regoliths: Proposition of penetration mechanics. Planet. Space Sci., 59, 13 (2011) 1529–1541.

DOI: 10.1016/j.pss.2011.06.019

Google Scholar

[7] S. P. Gorevan, T. Myrick, K. Davis, J. J. Chau, P. Bartlett, S. Mukherjee, R. Anderson, S. W. Squyres, R. E. Arvidson, M. B. Madsen, P. Bertelsen, W. Goetz, C. S. Binau, L. Richter: Rock Abrasion Tool: Mars Exploration Rover mission, J. Geophys. Res., 108 (E12), 8068 (2003) ROV9-1–8.

DOI: 10.1029/2003je002061

Google Scholar

[8] R. F. Hamade, S. P. Manthri, F. Pusavec, K. A. Zacny, L. A. Taylor, O. W. Dillon Jr., K. E. Rouch, I. S. Jawahir: Compact core drilling in basalt rock using PCD tool inserts: Wear characteristics and cutting forces, J. Mater. Process. Technol., 210, 10 (2010) 1326–1339.

DOI: 10.1016/j.jmatprotec.2010.03.023

Google Scholar

[9] R. F. Hamade, F. Pusavec, S. P. Manthri, O. W. Dillon Jr., I. S. Jawahir: A methodology for the optimization of PCD compact core drilling in basalt rock, Int. J. Adv. Manuf. Technol., 61, 1–4 (2012) 369–377.

DOI: 10.1007/s00170-011-3696-5

Google Scholar

[10] X. Yu, P. Wang, X. Li, D. Yang: Thin Czochralski silicon solar cells based on diamond wire sawing technology, Sol. Energ. Mat. Sol. Cells., 98, (2012) 337–342.

DOI: 10.1016/j.solmat.2011.11.028

Google Scholar

[11] J. R. Schwendeman, C. B. Dreyer, J. P. H. Steele: Design Considerations for Development of a Wire-Based Rock Cutting Mechanism for Space Exploration. J. Mech. Des., 132, 11 (2010) 111010.

DOI: 10.1115/1.4001533

Google Scholar

[12] C. B. Dreyer, J. R. Schwendeman, J. P. H. Steele, T. E. Carrell, A. Niedringhaus, J. Skok: Development of a thin section device for space exploration: Rock cutting mechanism. Adv. Space Res., 51, 9 (2013) 1674–1691.

DOI: 10.1016/j.asr.2012.12.013

Google Scholar

[13] G. Paulsen, K. Zacny, C. B. Dreyer, A. Szucs, M. Szczesiak, C. Santoro, J. Craft, M. Hedlund, J. Skok: Robotic Instrument for Grinding Rocks Into Thin Sections (GRITS), Adv. Space Res., (2013).

DOI: 10.1016/j.asr.2013.01.001

Google Scholar

[14] K. Furutani, K. Suzuki: A Desktop Wire Saw Coating Machine by Using Electrical Discharge Machining, Proc. 2009 IEEE Int. Conf. Control Autom., Christchurch, New Zealand (2009) 2165–2170.

DOI: 10.1109/icca.2009.5410531

Google Scholar

[15] S. Jakubiszyn, J. Nikliborc, H. Wolniewicz, A. Szaynok: Electrification of the Dust of NaCl and KCl Whiskers, J. Appl. Phys., 33, 7 (1962) 2224–2226.

DOI: 10.1063/1.1728932

Google Scholar

[16] A. Takeuchi, H. Nagahama: Interpretation of charging on fracture or frictional slip surface of rocks, Phys. Earth Planet. Inter., 130, 3–4 (2002) 285–291.

DOI: 10.1016/s0031-9201(02)00013-4

Google Scholar