Mechanical Properties of Highly Filled Iron-ABS Composites in Injection Molding for FDM Wire Filament

Article Preview

Abstract:

This paper presents the development of a new polymer matrix composite (PMC) material for use in injection molding machine. The material consists of iron powder filled in an acrylonitrile butadiene styrene (ABS) and surfactant powder material. In this study, the effect of iron powder was investigated as a filler material in polymer matrix composite and ABS was chosen as a matrix material. The detailed formulations of compounding ratio by volume percentage (vol. %) with various combinations of the new PMC are investigated experimentally. Based on the result obtained, it was found that, vol. % increment of iron filler effected on the hardness, tensile and flexural strength. With highly filled iron content in ABS composites increase the hardness and tensile strength of PMC material through an injection molding process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 773-774)

Pages:

448-453

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Akinci, Mechanical and Morphological Properties of basalt filled Polymer Matrix Composites, Sci. J., Vol. 35, pp.29-32, (2009).

Google Scholar

[2] A. Gungor, Mechanical Properties of Iron powder filled high density Polyethylene Composites", J. of Materials and Design, 28, pp.1027-1030, (2007).

DOI: 10.1016/j.matdes.2005.11.003

Google Scholar

[3] A.A. Tseng and M. Tanaka, Advanced Deposition Techniques for Freeform Fabrication of metal and ceramic parts, Rapid Prototy. J., Vol. 7, No. 1, pp.6-17, (2001).

DOI: 10.1108/13552540110365117

Google Scholar

[4] B. Huang, S. Liang, X. Qu, The Rheology of metal Injection Molding, J. of Material Process. Technol., 137, pp.132-137, (2003).

Google Scholar

[5] B. H. Lee, J. Abdullah and Z. A. Khan, Optimization of Rapid Prototyping Parameters for Production of Flexible ABS Object, J. of Materials Process. Technol., Vol. 169, pp.54-61, (2005).

DOI: 10.1016/j.jmatprotec.2005.02.259

Google Scholar

[6] C. Karatas, A. Kocer, H. I. Unal, S. Saritas, Rheological Properties of Feedstocks prepared with steatite powder and polyethylene based thermoplastic binders, J. of Materials Process. Technol., 152, pp.77-83, (2004).

DOI: 10.1016/j.jmatprotec.2004.03.009

Google Scholar

[7] D. Karalekas, K. Antoniou, Composite Rapid Prototyping: Overcoming the drawback of poor Mechanical Properties, J. of Material Process. Technol., 153-154, pp.526-530, (2004).

DOI: 10.1016/j.jmatprotec.2004.04.019

Google Scholar

[8] D. B. Miracle, From science to Technological Significance, J. of Composites Sci. and Technol., 65, pp.2526-2540, (2005).

Google Scholar

[9] J. Ganster, H. P. Fink, M. Pinnow, High tenacity Man made cellulose fibre reinforced Thermoplastics Injection Moulding Compounds with polypropylene and alternative matrices, J. of Composites, Part A 37, pp.1796-1804, (2006).

DOI: 10.1016/j.compositesa.2005.09.005

Google Scholar

[10] L. Merz, S. Rath, V. Piotter, R. Ruprecht, et. al., Feedstock Development for micro powder Injection Molding, Microsystem Technol. 8, pp.129-132, (2002).

DOI: 10.1007/s00542-002-0166-x

Google Scholar

[11] L. Moballegh, J. Morshedian, M. Esfandeh, Copper Injection Molding using a Thermoplastic binder based on paraffin wax, J. of Materials Latters, 59, pp.2832-2837, (2005).

DOI: 10.1016/j.matlet.2005.04.027

Google Scholar

[12] M. A. Omar, I. Subuki, N. Abdullah, M. F. Ismail, The influence of palm stearin content on the Rheological Behavior of 316L stainless steel MIM compact, Vol. 2, No. 2, J. of Sci. and Technol., pp.1-14, (2010).

Google Scholar

[13] S. Y. M. Amin, K. R. Jamaludin, N. Muhamad, Rheological Properties of SS316L MIM Feedstock prepared with different particle sizes and powder loadings, J. of the Institution of Eng., Vol. 71, pp.59-63, (2009).

Google Scholar

[14] M. Nidzad, S. H. Masood, I. sbarski and A. Groth, A study of melt flow analysis of an ABS-Iron composite in Fused Deposition Modeling Process, Tsinghua Sci. and Technol., Vol. 14, No. S1, pp.29-37, (2009).

DOI: 10.1016/s1007-0214(09)70063-x

Google Scholar

[15] M. Nidzad, S. H. Masood, I. Sbarski, Thermo Mechanical Properties of a highly filled Polymeric Composites for Fused Deposition Modeling, J. of Materials and Design, 32, pp.3448-3456, (2011).

DOI: 10.1016/j.matdes.2011.01.056

Google Scholar

[16] M. H. I. Ibrahim, N. Muhammad, A.B. Sulong, Rheological investigation of water atomized stainless steel powder for micro metal Injection Molding, J. of Mech. and Material Eng., Vol. 4, No 1, pp.1-8, (2009).

Google Scholar

[17] O. Diegel, S. Singamneni, B. Huang, The future of Electronic Products : Conductive 3D Printing, Taylor & Francis London, UK, 2010.

Google Scholar

[18] R. Anitha, S. Arunachalam and P. Radhakrishnan, Critical Parameters influencing the quality of Prototypes in Fused Deposition Modeling, J. of materials process. technol., Vol. 118, pp.385-388, (2001).

DOI: 10.1016/s0924-0136(01)00980-3

Google Scholar

[19] S. Ahn, S. J. Park, S. Lee, S. V. Atre, R. M. German, Effect of powders and binders on material Properties and Molding Parameters in iron and stainless steel Injection Molding Process, J. of Powder Technol., 193, pp.162-169, (2009).

DOI: 10.1016/j.powtec.2009.03.010

Google Scholar

[20] S. Kumar and J. P. Kruth, Composites by Rapid Prototyping Technology, J. of Material and Design, Vol. 31, pp.850-856, (2010).

DOI: 10.1016/j.matdes.2009.07.045

Google Scholar

[21] S. Ma, I. Gibson, G. Balaji and Q. J. Hu, Development of epoxy matrix Composites for Rapid Tooling Applications, J. of Material Process. Technol., 192-193, pp.75-82, (2007).

DOI: 10.1016/j.jmatprotec.2007.04.086

Google Scholar

[22] S. H. Masood and W. Q. Song, Development of new metal/polymer materials for Rapid Tooling using Fused Deposition Modeling, J. of Materials and Design, Vol. 25, pp.587-594, (2004).

DOI: 10.1016/j.matdes.2004.02.009

Google Scholar

[23] S. H. Masood and W. Q. Song, Thermal Charecteristics of a new metal/polymer material for FDM Rapid Prototyping Process, Research articles: Assembly Automation 25/4, pp.309-315, Emerald Group Publishing Limited, (2005).

DOI: 10.1108/01445150510626451

Google Scholar

[24] T. Hartwig, G. Veltl, F. Petzoldt, H. Kunze, R. Scholl, B. Kieback, Powder for metal Injection Molding, J. of the European Ceramic Society, 18, pp.1211-1216, (1998).

DOI: 10.1016/s0955-2219(98)00044-2

Google Scholar

[25] W. Zhong, F. Li, Z. Zhang, L. Song and Z. Li, Short fiber reinforced for Fused Deposition Modeling, J. of Materials Sci. and Eng., A301, pp.125-130, (2001).

DOI: 10.1016/s0921-5093(00)01810-4

Google Scholar

[26] Y. Li, L. Li, K. A. Khalil, Effect of powder loading on metal Injection Molding stainless steels, J. of Materials Process. Technol., 183, pp.432-439, (2007).

DOI: 10.1016/j.jmatprotec.2006.10.039

Google Scholar

[27] Y. C. Lam, X. Chen, K. C. Tam, S. C. M. Yu, Simulation of particle migration of powder resin system in Injection Molding, J. of Manufac. Sci. and Eng., Vol. 125, pp.538-547, (2003).

DOI: 10.1115/1.1580850

Google Scholar

[28] J. Tyberg, J. H. Bohn, FDM Systems and local adaptive slicing, J. of Materials and Design 20, pp.77-82, (1999).

DOI: 10.1016/s0261-3069(99)00012-6

Google Scholar

[29] Y. Z. Jin, J. F. Zhang, Y. Wang, Z. C. Zhu, Filament geometrical model and Nozzle Trajectory in the Fused Deposition Modeling Process, J. of Zhejiang University Sci. A, 10(3) p.370 – 376, (2009).

DOI: 10.1631/jzus.a0820346

Google Scholar

[30] A. K. Sood, R.K. Ohdar, S.S. Mahapatra, Improving dimensional accuracy of Fused Deposition Modelling Processed part using grey Taguchi Method, J. of Materials and Design, 30, p.4243–4252, (2009).

DOI: 10.1016/j.matdes.2009.04.030

Google Scholar

[31] S. H. Masood, Intelligent Rapid Prototyping with Fused Deposition Modelling, Rapid Prototy. J., Vol.2 No.1, p.24–33, (1996).

DOI: 10.1108/13552549610109054

Google Scholar

[32] A. Bellini, S. G. M. Bertoldi Liquefier Dynamics in Fused Deposition, J. of Manufac. Sci. and Eng., Vol. 126, pp.237-246, (2004).

DOI: 10.1115/1.1688377

Google Scholar

[33] C. Bellehum, L. Li, Q. Sun, P. Gu, Modeling of bond formation between Polymer Filaments in the Fused Deposition Modeling Process, J. of Manufac. Process, Vol 6 No. 2, (2004).

DOI: 10.1016/s1526-6125(04)70071-7

Google Scholar

[34] G. Wu, N. A. Langrana, R. Sadanji, S. Danforth, Solid Freeform Fabrication of metal Components using Fused Deposition of metals, J. of Materials and Design, 23 pp.97-105, (2000).

DOI: 10.1016/s0261-3069(01)00079-6

Google Scholar