[1]
A. Akinci, Mechanical and Morphological Properties of basalt filled Polymer Matrix Composites, Sci. J., Vol. 35, pp.29-32, (2009).
Google Scholar
[2]
A. Gungor, Mechanical Properties of Iron powder filled high density Polyethylene Composites", J. of Materials and Design, 28, pp.1027-1030, (2007).
DOI: 10.1016/j.matdes.2005.11.003
Google Scholar
[3]
A.A. Tseng and M. Tanaka, Advanced Deposition Techniques for Freeform Fabrication of metal and ceramic parts, Rapid Prototy. J., Vol. 7, No. 1, pp.6-17, (2001).
DOI: 10.1108/13552540110365117
Google Scholar
[4]
B. Huang, S. Liang, X. Qu, The Rheology of metal Injection Molding, J. of Material Process. Technol., 137, pp.132-137, (2003).
Google Scholar
[5]
B. H. Lee, J. Abdullah and Z. A. Khan, Optimization of Rapid Prototyping Parameters for Production of Flexible ABS Object, J. of Materials Process. Technol., Vol. 169, pp.54-61, (2005).
DOI: 10.1016/j.jmatprotec.2005.02.259
Google Scholar
[6]
C. Karatas, A. Kocer, H. I. Unal, S. Saritas, Rheological Properties of Feedstocks prepared with steatite powder and polyethylene based thermoplastic binders, J. of Materials Process. Technol., 152, pp.77-83, (2004).
DOI: 10.1016/j.jmatprotec.2004.03.009
Google Scholar
[7]
D. Karalekas, K. Antoniou, Composite Rapid Prototyping: Overcoming the drawback of poor Mechanical Properties, J. of Material Process. Technol., 153-154, pp.526-530, (2004).
DOI: 10.1016/j.jmatprotec.2004.04.019
Google Scholar
[8]
D. B. Miracle, From science to Technological Significance, J. of Composites Sci. and Technol., 65, pp.2526-2540, (2005).
Google Scholar
[9]
J. Ganster, H. P. Fink, M. Pinnow, High tenacity Man made cellulose fibre reinforced Thermoplastics Injection Moulding Compounds with polypropylene and alternative matrices, J. of Composites, Part A 37, pp.1796-1804, (2006).
DOI: 10.1016/j.compositesa.2005.09.005
Google Scholar
[10]
L. Merz, S. Rath, V. Piotter, R. Ruprecht, et. al., Feedstock Development for micro powder Injection Molding, Microsystem Technol. 8, pp.129-132, (2002).
DOI: 10.1007/s00542-002-0166-x
Google Scholar
[11]
L. Moballegh, J. Morshedian, M. Esfandeh, Copper Injection Molding using a Thermoplastic binder based on paraffin wax, J. of Materials Latters, 59, pp.2832-2837, (2005).
DOI: 10.1016/j.matlet.2005.04.027
Google Scholar
[12]
M. A. Omar, I. Subuki, N. Abdullah, M. F. Ismail, The influence of palm stearin content on the Rheological Behavior of 316L stainless steel MIM compact, Vol. 2, No. 2, J. of Sci. and Technol., pp.1-14, (2010).
Google Scholar
[13]
S. Y. M. Amin, K. R. Jamaludin, N. Muhamad, Rheological Properties of SS316L MIM Feedstock prepared with different particle sizes and powder loadings, J. of the Institution of Eng., Vol. 71, pp.59-63, (2009).
Google Scholar
[14]
M. Nidzad, S. H. Masood, I. sbarski and A. Groth, A study of melt flow analysis of an ABS-Iron composite in Fused Deposition Modeling Process, Tsinghua Sci. and Technol., Vol. 14, No. S1, pp.29-37, (2009).
DOI: 10.1016/s1007-0214(09)70063-x
Google Scholar
[15]
M. Nidzad, S. H. Masood, I. Sbarski, Thermo Mechanical Properties of a highly filled Polymeric Composites for Fused Deposition Modeling, J. of Materials and Design, 32, pp.3448-3456, (2011).
DOI: 10.1016/j.matdes.2011.01.056
Google Scholar
[16]
M. H. I. Ibrahim, N. Muhammad, A.B. Sulong, Rheological investigation of water atomized stainless steel powder for micro metal Injection Molding, J. of Mech. and Material Eng., Vol. 4, No 1, pp.1-8, (2009).
Google Scholar
[17]
O. Diegel, S. Singamneni, B. Huang, The future of Electronic Products : Conductive 3D Printing, Taylor & Francis London, UK, 2010.
Google Scholar
[18]
R. Anitha, S. Arunachalam and P. Radhakrishnan, Critical Parameters influencing the quality of Prototypes in Fused Deposition Modeling, J. of materials process. technol., Vol. 118, pp.385-388, (2001).
DOI: 10.1016/s0924-0136(01)00980-3
Google Scholar
[19]
S. Ahn, S. J. Park, S. Lee, S. V. Atre, R. M. German, Effect of powders and binders on material Properties and Molding Parameters in iron and stainless steel Injection Molding Process, J. of Powder Technol., 193, pp.162-169, (2009).
DOI: 10.1016/j.powtec.2009.03.010
Google Scholar
[20]
S. Kumar and J. P. Kruth, Composites by Rapid Prototyping Technology, J. of Material and Design, Vol. 31, pp.850-856, (2010).
DOI: 10.1016/j.matdes.2009.07.045
Google Scholar
[21]
S. Ma, I. Gibson, G. Balaji and Q. J. Hu, Development of epoxy matrix Composites for Rapid Tooling Applications, J. of Material Process. Technol., 192-193, pp.75-82, (2007).
DOI: 10.1016/j.jmatprotec.2007.04.086
Google Scholar
[22]
S. H. Masood and W. Q. Song, Development of new metal/polymer materials for Rapid Tooling using Fused Deposition Modeling, J. of Materials and Design, Vol. 25, pp.587-594, (2004).
DOI: 10.1016/j.matdes.2004.02.009
Google Scholar
[23]
S. H. Masood and W. Q. Song, Thermal Charecteristics of a new metal/polymer material for FDM Rapid Prototyping Process, Research articles: Assembly Automation 25/4, pp.309-315, Emerald Group Publishing Limited, (2005).
DOI: 10.1108/01445150510626451
Google Scholar
[24]
T. Hartwig, G. Veltl, F. Petzoldt, H. Kunze, R. Scholl, B. Kieback, Powder for metal Injection Molding, J. of the European Ceramic Society, 18, pp.1211-1216, (1998).
DOI: 10.1016/s0955-2219(98)00044-2
Google Scholar
[25]
W. Zhong, F. Li, Z. Zhang, L. Song and Z. Li, Short fiber reinforced for Fused Deposition Modeling, J. of Materials Sci. and Eng., A301, pp.125-130, (2001).
DOI: 10.1016/s0921-5093(00)01810-4
Google Scholar
[26]
Y. Li, L. Li, K. A. Khalil, Effect of powder loading on metal Injection Molding stainless steels, J. of Materials Process. Technol., 183, pp.432-439, (2007).
DOI: 10.1016/j.jmatprotec.2006.10.039
Google Scholar
[27]
Y. C. Lam, X. Chen, K. C. Tam, S. C. M. Yu, Simulation of particle migration of powder resin system in Injection Molding, J. of Manufac. Sci. and Eng., Vol. 125, pp.538-547, (2003).
DOI: 10.1115/1.1580850
Google Scholar
[28]
J. Tyberg, J. H. Bohn, FDM Systems and local adaptive slicing, J. of Materials and Design 20, pp.77-82, (1999).
DOI: 10.1016/s0261-3069(99)00012-6
Google Scholar
[29]
Y. Z. Jin, J. F. Zhang, Y. Wang, Z. C. Zhu, Filament geometrical model and Nozzle Trajectory in the Fused Deposition Modeling Process, J. of Zhejiang University Sci. A, 10(3) p.370 – 376, (2009).
DOI: 10.1631/jzus.a0820346
Google Scholar
[30]
A. K. Sood, R.K. Ohdar, S.S. Mahapatra, Improving dimensional accuracy of Fused Deposition Modelling Processed part using grey Taguchi Method, J. of Materials and Design, 30, p.4243–4252, (2009).
DOI: 10.1016/j.matdes.2009.04.030
Google Scholar
[31]
S. H. Masood, Intelligent Rapid Prototyping with Fused Deposition Modelling, Rapid Prototy. J., Vol.2 No.1, p.24–33, (1996).
DOI: 10.1108/13552549610109054
Google Scholar
[32]
A. Bellini, S. G. M. Bertoldi Liquefier Dynamics in Fused Deposition, J. of Manufac. Sci. and Eng., Vol. 126, pp.237-246, (2004).
DOI: 10.1115/1.1688377
Google Scholar
[33]
C. Bellehum, L. Li, Q. Sun, P. Gu, Modeling of bond formation between Polymer Filaments in the Fused Deposition Modeling Process, J. of Manufac. Process, Vol 6 No. 2, (2004).
DOI: 10.1016/s1526-6125(04)70071-7
Google Scholar
[34]
G. Wu, N. A. Langrana, R. Sadanji, S. Danforth, Solid Freeform Fabrication of metal Components using Fused Deposition of metals, J. of Materials and Design, 23 pp.97-105, (2000).
DOI: 10.1016/s0261-3069(01)00079-6
Google Scholar