A Taguchi Design Study for Optimisation of Plasma Sprayed Hydroxyapatite Coatings

Article Preview

Abstract:

Plasma sprayed hydroxyapatite coatings were deposited onto mild steel substrates. A Taguchi L9 design of experiment protocol was used to optimise the coating process parameters. The effect of three factors: (i) power and secondary gas flow rate (X1), (ii) powder feed rate and carrier gas flow rate (X2), and (iii) stand-off distance (X3) on the coating responses was studied. The responses of the plasma sprayed hydroxyapatite coatings were evaluated in terms of porosity, deposition efficiency, microhardness, crystallinity, and surface roughness. A regression analysis established relationships between process parameters and responses. Higher power, lower powder feed rate and the middle stand-off distance of 11 cm lead to optimum attributes of low porosity, high deposition efficiency, high microhardness, high crystallinity, and high surface roughness.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 773-774)

Pages:

590-601

Citation:

Online since:

November 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tsui, Y.C., C. Doyle, and T.W. Clyne, Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 1: Mechanical properties and residual stress levels. Biomaterials, 1998. 19(22): pp.2015-2029.

DOI: 10.1016/s0142-9612(98)00103-3

Google Scholar

[2] Chen, Y., et al., Laser-surface-alloyed carbon nanotubes reinforced hydroxyapatite composite coatings. Appl. Phy. Lett., 2005. 86(25): pp.1-3.

DOI: 10.1063/1.1951054

Google Scholar

[3] Metikoš-Huković, M., et al., An in vitro study of Ti and Ti-alloys coated with sol–gel derived hydroxyapatite coatings. Surf. Coat. Technol., 2003. 165(1): pp.40-50.

DOI: 10.1016/s0257-8972(02)00732-6

Google Scholar

[4] Siriphannon, P., et al., Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid. J. Euro. Ceram. Soc., 2002. 22(4): pp.511-520.

DOI: 10.1016/s0955-2219(01)00301-6

Google Scholar

[5] Kokubo, T., H.-M. Kim, and M. Kawashita, Novel bioactive materials with different mechanical properties. Biomaterials, 2003. 24(13): pp.2161-2175.

DOI: 10.1016/s0142-9612(03)00044-9

Google Scholar

[6] Hasan, S. and J. Stokes, Design of experiment analysis of the Sulzer Metco DJ high velocity oxy-fuel coating of hydroxyapatite for orthopedic applications. J. Therm. Spray Technol., 2011. 20(1-2): pp.186-194.

DOI: 10.1007/s11666-010-9566-0

Google Scholar

[7] Lin, C.K. and C.C. Berndt, Measurement and analysis of adhesion strength for thermally sprayed coatings. J. Therm. Spray Technol., 1994. 3(1): pp.75-104.

DOI: 10.1007/bf02649003

Google Scholar

[8] Jeong, Y.H., H.C. Choe, and S.W. Eun, Hydroxyapatite coating on the Ti-35Nb-xZr alloy by electron beam-physical vapor deposition. Thin Solid Films, 2011. 519(20): pp.7050-7056.

DOI: 10.1016/j.tsf.2011.04.086

Google Scholar

[9] Mahmoodi, S., et al., Electrophoretic deposition of hydroxyapatite-chitosan nanocomposite coatings in different alcohols. Surf. Coat. Technol., 2012.

Google Scholar

[10] Jamesh, M., S. Kumar, and T.S.N.S. Narayanan, Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications. J. Coat. Technol. Res., 2012. 9(4): pp.495-502.

DOI: 10.1007/s11998-011-9382-6

Google Scholar

[11] Maleki-Ghaleh, H., et al., Hydroxyapatite coating on NiTi shape memory alloy by electrophoretic deposition process. Surf. Coat. Technol., 2012. 208: pp.57-63.

DOI: 10.1016/j.surfcoat.2012.08.001

Google Scholar

[12] Bongio, M., et al., Biomimetic modification of synthetic hydrogels by incorporation of adhesive peptides and calcium phosphate nanoparticles: in vitro evaluation of cell behavior. Euro. cells & mater., 2011. 22: pp.359-376.

DOI: 10.22203/ecm.v022a27

Google Scholar

[13] Aydin, E., J.A. Planell, and V. Hasirci, Hydroxyapatite nanorod-reinforced biodegradable poly(l-lactic acid) composites for bone plate applications. J. Mater. Sci.: Mater. Med., 2011. 22(11): pp.2413-2427.

DOI: 10.1007/s10856-011-4435-z

Google Scholar

[14] Seema, K., B. Uma, and K. Suchita, Transformations in sol-gel synthesized nanoscale hydroxyapatite calcined under different temperatures and time conditions. J. Mater. Eng. Perform., 2012. 21(8): pp.1737-1743.

DOI: 10.1007/s11665-011-0059-1

Google Scholar

[15] Singh, V.K. and B.R. Reddy, Synthesis and characterization of bioactive zirconia toughened alumina doped with HAp and fluoride compounds. Ceram. Int., 2012. 38(7): pp.5333-5340.

DOI: 10.1016/j.ceramint.2012.03.039

Google Scholar

[16] Tan, H., C. Guo, and X. Ma, Preparation of Mullite Fibers by Sol-Gel Process and Study of Their Morphology. Mater. Manufact. Processes, 2011. 26(11): pp.1374-1377.

DOI: 10.1080/10426914.2011.568570

Google Scholar

[17] Duta, L., et al., Novel doped hydroxyapatite thin films obtained by pulsed laser deposition. Appl. Surf. Sci., 2013. 265: pp.41-49.

DOI: 10.1016/j.apsusc.2012.10.077

Google Scholar

[18] Rajesh, P., et al., Pulsed laser deposition of hydroxyapatite on titanium substrate with titania interlayer. J. Mater. Sci.: Mater. Med., 2011. 22(3): pp.497-505.

DOI: 10.1007/s10856-011-4230-x

Google Scholar

[19] Balani, K., et al., Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution. Acta Biomaterialia, 2007. 3(6): pp.944-951.

DOI: 10.1016/j.actbio.2007.06.001

Google Scholar

[20] Balani, K. and A. Agarwal, Process map for plasma sprayed aluminum oxide-carbon nanotube nanocomposite coatings. Surf. Coat. Technol., 2008. 202(17): pp.4270-4277.

DOI: 10.1016/j.surfcoat.2008.03.024

Google Scholar

[21] Friis, M. and C. Persson, Control of thermal spray processes by means of process maps and process windows. J. Therm. Spray Technol., 2003. 12(1): pp.44-52.

DOI: 10.1361/105996303770348492

Google Scholar

[22] Cizek, J., K.A. Khor, and Z. Prochazka, Influence of spraying conditions on thermal and velocity properties of plasma sprayed hydroxyapatite. Mater. Sci. Eng. C, 2007. 27(2): pp.340-344.

DOI: 10.1016/j.msec.2006.05.002

Google Scholar

[23] Heimann, R.B., et al., Biomimetic processes during in vitro leaching of plasma-sprayed hydroxyapatite coatings for endoprosthetic applications. Materialwissenschaft und Werkstofftechnik, 2001. 32(12): pp.913-921.

DOI: 10.1002/1521-4052(200112)32:12<913::aid-mawe913>3.0.co;2-h

Google Scholar

[24] Dyshlovenko, S., et al., Relationship between plasma spray operational parameters and microstructure of hydroxyapatite coatings and powder particles sprayed into water. Surf. Coat. Technol., 2006. 200(12-13): pp.3845-3855.

DOI: 10.1016/j.surfcoat.2004.11.037

Google Scholar

[25] Dyshlovenko, S., et al., Experimental design of plasma spraying and laser treatment of hydroxyapatite coatings. Surf. Coat. Technol., 2006. 201(5): pp.2054-2060.

DOI: 10.1016/j.surfcoat.2006.04.055

Google Scholar

[26] Levingstone, T.J., Optimisation of Plasma Sprayed Hydroxyapatite Coatings, PhD Thesis, 2008, Dublin City University: Ireland.

Google Scholar

[27] Li, J.F., et al., Optimizing the plasma spray process parameters of yttria stabilized zirconia coatings using a uniform design of experiments. J. Mater. Processing Technol., 2005. 160(1): pp.34-42.

DOI: 10.1016/j.jmatprotec.2004.02.039

Google Scholar

[28] Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2012.

Google Scholar

[29] Design-Expert(R) v8 software, Stat-Ease, Inc., Minneapolis, MN.

Google Scholar

[30] Minitab 16 Statistical Software (2010). [Computer software]. State College, PA: Minitab, Inc. .

Google Scholar

[31] Sun, L., C.C. Berndt, and C.P. Grey, Phase, structural and microstructural investigations of plasma sprayed hydroxyapatite coatings. Mater. Sci. Eng. A, 2003. 360(1-2): pp.70-84.

DOI: 10.1016/s0921-5093(03)00439-8

Google Scholar

[32] Saravanan, P., et al., Study of plasma- and detonation gun-sprayed alumina coatings using Taguchi experimental design. J. Therm. Spray Technol., 2000. 9(4): pp.505-512.

DOI: 10.1007/bf02608554

Google Scholar

[33] Gross, K.A. and C.C. Berndt, Thermal spraying of hydroxyapatite for bioceramic applications. Key Eng. Mater., 1991. 53-55: pp.124-129.

DOI: 10.4028/www.scientific.net/kem.53-55.124

Google Scholar

[34] Lu, Y.P., et al., Further studies on the effect of stand-off distance on characteristics of plasma sprayed hydroxyapatite coating. Surf. Coat. Technol., 2002. 157(2-3): pp.221-225.

DOI: 10.1016/s0257-8972(02)00166-4

Google Scholar

[35] Implants for Surgery- Hydroxyapatite. Part 2: Coatings of Hydroxyapatite. BS ISO 13779-2:2000, International Organisation for Standards, 2000.

Google Scholar