[1]
Tsui, Y.C., C. Doyle, and T.W. Clyne, Plasma sprayed hydroxyapatite coatings on titanium substrates. Part 1: Mechanical properties and residual stress levels. Biomaterials, 1998. 19(22): pp.2015-2029.
DOI: 10.1016/s0142-9612(98)00103-3
Google Scholar
[2]
Chen, Y., et al., Laser-surface-alloyed carbon nanotubes reinforced hydroxyapatite composite coatings. Appl. Phy. Lett., 2005. 86(25): pp.1-3.
DOI: 10.1063/1.1951054
Google Scholar
[3]
Metikoš-Huković, M., et al., An in vitro study of Ti and Ti-alloys coated with sol–gel derived hydroxyapatite coatings. Surf. Coat. Technol., 2003. 165(1): pp.40-50.
DOI: 10.1016/s0257-8972(02)00732-6
Google Scholar
[4]
Siriphannon, P., et al., Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid. J. Euro. Ceram. Soc., 2002. 22(4): pp.511-520.
DOI: 10.1016/s0955-2219(01)00301-6
Google Scholar
[5]
Kokubo, T., H.-M. Kim, and M. Kawashita, Novel bioactive materials with different mechanical properties. Biomaterials, 2003. 24(13): pp.2161-2175.
DOI: 10.1016/s0142-9612(03)00044-9
Google Scholar
[6]
Hasan, S. and J. Stokes, Design of experiment analysis of the Sulzer Metco DJ high velocity oxy-fuel coating of hydroxyapatite for orthopedic applications. J. Therm. Spray Technol., 2011. 20(1-2): pp.186-194.
DOI: 10.1007/s11666-010-9566-0
Google Scholar
[7]
Lin, C.K. and C.C. Berndt, Measurement and analysis of adhesion strength for thermally sprayed coatings. J. Therm. Spray Technol., 1994. 3(1): pp.75-104.
DOI: 10.1007/bf02649003
Google Scholar
[8]
Jeong, Y.H., H.C. Choe, and S.W. Eun, Hydroxyapatite coating on the Ti-35Nb-xZr alloy by electron beam-physical vapor deposition. Thin Solid Films, 2011. 519(20): pp.7050-7056.
DOI: 10.1016/j.tsf.2011.04.086
Google Scholar
[9]
Mahmoodi, S., et al., Electrophoretic deposition of hydroxyapatite-chitosan nanocomposite coatings in different alcohols. Surf. Coat. Technol., 2012.
Google Scholar
[10]
Jamesh, M., S. Kumar, and T.S.N.S. Narayanan, Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications. J. Coat. Technol. Res., 2012. 9(4): pp.495-502.
DOI: 10.1007/s11998-011-9382-6
Google Scholar
[11]
Maleki-Ghaleh, H., et al., Hydroxyapatite coating on NiTi shape memory alloy by electrophoretic deposition process. Surf. Coat. Technol., 2012. 208: pp.57-63.
DOI: 10.1016/j.surfcoat.2012.08.001
Google Scholar
[12]
Bongio, M., et al., Biomimetic modification of synthetic hydrogels by incorporation of adhesive peptides and calcium phosphate nanoparticles: in vitro evaluation of cell behavior. Euro. cells & mater., 2011. 22: pp.359-376.
DOI: 10.22203/ecm.v022a27
Google Scholar
[13]
Aydin, E., J.A. Planell, and V. Hasirci, Hydroxyapatite nanorod-reinforced biodegradable poly(l-lactic acid) composites for bone plate applications. J. Mater. Sci.: Mater. Med., 2011. 22(11): pp.2413-2427.
DOI: 10.1007/s10856-011-4435-z
Google Scholar
[14]
Seema, K., B. Uma, and K. Suchita, Transformations in sol-gel synthesized nanoscale hydroxyapatite calcined under different temperatures and time conditions. J. Mater. Eng. Perform., 2012. 21(8): pp.1737-1743.
DOI: 10.1007/s11665-011-0059-1
Google Scholar
[15]
Singh, V.K. and B.R. Reddy, Synthesis and characterization of bioactive zirconia toughened alumina doped with HAp and fluoride compounds. Ceram. Int., 2012. 38(7): pp.5333-5340.
DOI: 10.1016/j.ceramint.2012.03.039
Google Scholar
[16]
Tan, H., C. Guo, and X. Ma, Preparation of Mullite Fibers by Sol-Gel Process and Study of Their Morphology. Mater. Manufact. Processes, 2011. 26(11): pp.1374-1377.
DOI: 10.1080/10426914.2011.568570
Google Scholar
[17]
Duta, L., et al., Novel doped hydroxyapatite thin films obtained by pulsed laser deposition. Appl. Surf. Sci., 2013. 265: pp.41-49.
DOI: 10.1016/j.apsusc.2012.10.077
Google Scholar
[18]
Rajesh, P., et al., Pulsed laser deposition of hydroxyapatite on titanium substrate with titania interlayer. J. Mater. Sci.: Mater. Med., 2011. 22(3): pp.497-505.
DOI: 10.1007/s10856-011-4230-x
Google Scholar
[19]
Balani, K., et al., Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution. Acta Biomaterialia, 2007. 3(6): pp.944-951.
DOI: 10.1016/j.actbio.2007.06.001
Google Scholar
[20]
Balani, K. and A. Agarwal, Process map for plasma sprayed aluminum oxide-carbon nanotube nanocomposite coatings. Surf. Coat. Technol., 2008. 202(17): pp.4270-4277.
DOI: 10.1016/j.surfcoat.2008.03.024
Google Scholar
[21]
Friis, M. and C. Persson, Control of thermal spray processes by means of process maps and process windows. J. Therm. Spray Technol., 2003. 12(1): pp.44-52.
DOI: 10.1361/105996303770348492
Google Scholar
[22]
Cizek, J., K.A. Khor, and Z. Prochazka, Influence of spraying conditions on thermal and velocity properties of plasma sprayed hydroxyapatite. Mater. Sci. Eng. C, 2007. 27(2): pp.340-344.
DOI: 10.1016/j.msec.2006.05.002
Google Scholar
[23]
Heimann, R.B., et al., Biomimetic processes during in vitro leaching of plasma-sprayed hydroxyapatite coatings for endoprosthetic applications. Materialwissenschaft und Werkstofftechnik, 2001. 32(12): pp.913-921.
DOI: 10.1002/1521-4052(200112)32:12<913::aid-mawe913>3.0.co;2-h
Google Scholar
[24]
Dyshlovenko, S., et al., Relationship between plasma spray operational parameters and microstructure of hydroxyapatite coatings and powder particles sprayed into water. Surf. Coat. Technol., 2006. 200(12-13): pp.3845-3855.
DOI: 10.1016/j.surfcoat.2004.11.037
Google Scholar
[25]
Dyshlovenko, S., et al., Experimental design of plasma spraying and laser treatment of hydroxyapatite coatings. Surf. Coat. Technol., 2006. 201(5): pp.2054-2060.
DOI: 10.1016/j.surfcoat.2006.04.055
Google Scholar
[26]
Levingstone, T.J., Optimisation of Plasma Sprayed Hydroxyapatite Coatings, PhD Thesis, 2008, Dublin City University: Ireland.
Google Scholar
[27]
Li, J.F., et al., Optimizing the plasma spray process parameters of yttria stabilized zirconia coatings using a uniform design of experiments. J. Mater. Processing Technol., 2005. 160(1): pp.34-42.
DOI: 10.1016/j.jmatprotec.2004.02.039
Google Scholar
[28]
Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2012.
Google Scholar
[29]
Design-Expert(R) v8 software, Stat-Ease, Inc., Minneapolis, MN.
Google Scholar
[30]
Minitab 16 Statistical Software (2010). [Computer software]. State College, PA: Minitab, Inc. .
Google Scholar
[31]
Sun, L., C.C. Berndt, and C.P. Grey, Phase, structural and microstructural investigations of plasma sprayed hydroxyapatite coatings. Mater. Sci. Eng. A, 2003. 360(1-2): pp.70-84.
DOI: 10.1016/s0921-5093(03)00439-8
Google Scholar
[32]
Saravanan, P., et al., Study of plasma- and detonation gun-sprayed alumina coatings using Taguchi experimental design. J. Therm. Spray Technol., 2000. 9(4): pp.505-512.
DOI: 10.1007/bf02608554
Google Scholar
[33]
Gross, K.A. and C.C. Berndt, Thermal spraying of hydroxyapatite for bioceramic applications. Key Eng. Mater., 1991. 53-55: pp.124-129.
DOI: 10.4028/www.scientific.net/kem.53-55.124
Google Scholar
[34]
Lu, Y.P., et al., Further studies on the effect of stand-off distance on characteristics of plasma sprayed hydroxyapatite coating. Surf. Coat. Technol., 2002. 157(2-3): pp.221-225.
DOI: 10.1016/s0257-8972(02)00166-4
Google Scholar
[35]
Implants for Surgery- Hydroxyapatite. Part 2: Coatings of Hydroxyapatite. BS ISO 13779-2:2000, International Organisation for Standards, 2000.
Google Scholar